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I. Introduction

Estimation of the sensitivity of problem functions with respect to problem variables

forms the basis for many of our modem day algorithms for t_ngineering optimization. The

most common application of problem sensitivities has been ia the calculation of objective

function and constraint partial derivatives for determining se arch directions and optimality

conditions. A second form of sensitivity analysis, parameter sensitivity, has also become

an important topic in recent years with the advent of renewed research in the optimization of

large engineering systems by means of decomposition meff ods. By parameter sensitivity,

we refer to the estimation of changes in the modeling functi ms and current design variables

due to small changes in the fixed parameters of the formula1 ion. Methods for calculating

these derivatives have been proposed and have been used a; the basis of a method for

multi-level decomposition of large engineering problems [,t',obieski, 1982]. Two

drawbacks to estimating parameter sensitivities by current r,lethods have been: (1) the need

for second order information about the Lagrangian at the m_rrent point, and (2) the

estimates assume no change in the active set of constraints. The objectives of this work

were to investigate solutions to these two problems.

1.1. STANDARD NOTATION

To provide a framework about which we can disc_Lss the various ways sensitivity

analysis can be performed, the following standard form of the nonlinear programming

problem, which explicitly represents the problem paramet,:rs, is presented.

Minimize:

Subject to:

f(x,P) Objective function (1.1)

hi(x,P) = 0 Equality constrairts 1 = 1,L (1.2)

gj(x,P) >_0 Inequality constraints j = 1,J (1.3)

Xmin < x < Xmax Variable bounds (1.4)

x = (Xl,X2 ..... Xn) Design variables (1.5)

P = (pl,P2 .... Pk) Problem paramet, rs (1.6)

In the above formulation, we assume that the proi,lem functions f, g, and h can be

either linear or nonlinear functions of the design variables. We also assume that the

problem parameters P, are held fixed during the course o! the optimization. Any candidate

solution point, x*, must satisfy the following first order Kuhn-Tucker conditions:

VxL(x,v,u) = 0

hi(x) = 0 1 = 1,L

gj(x) > 0 j = 1,J

(1.7)

(1.8)

(1.9)



ujgj(x) = 0 j = 1,J

uj>0 j= 1,J

where the Lagrangian L, is given by:

L(x,v,u) = f(x) + _Vl hi(x) - _uj gj(x)

(1.10)

(1.11)

(1.12)

At some point, usually the optimal point, we are inte,:sted in understanding the

effect that changes in P will have on our proposed solution :_*. Therefore we seek the

sensitivities, df/dP, 0x/OP, and 3(h,g)/OP 1. In this report, v,e will propose a new

algorithm based on the Recursive Quadratic Programming (1; QP) method for estimating

these parameter sensitivities. The following sections provid, a description of this algorithm

and how it relates to current methods, a discussion of the implementation issues, and some

initial testing on a test set of known characteristics. In addit on, section 6 proposes some

solutions for estimating sensitivities in those cases where the active set of the constraints

changes when the parameter is changed.

1 The notation (h,g) refers to the set of constraints active at the curren point.



2. Background

The standard problem of parameter sensitivity analysis is to indicate how the

objective function, constraints, and optimum design variables will change when problem

parameters or design variables are changed from their currer_t values. Parameter Sensitivity

analysis is usually performed at a candidate optimum point where we might be interested in

studying how the optimal design might be effected by chan_es in specifications, variability

due to manufacturing, or operational noises. In this chapter we present a historical

overview of the significant developments in sensitivity analT_,sis and provide a review and

assessment of current parameter sensitivity methods. The final section of the chapter

reviews work done in estimating parameter sensitivities for .:hose cases where the active

constraint set changes.

2.1. REVIEW OF PARAMETER SENSITIVITY METI-!ODS

The roots of sensitivity analysis can be traced to Lal,q'ange (1881) when he

suggested solving equality constrained extrema problems ty finding the solution x*,and

v*, for the equations

VxL(x,v) = 0 (2.1)

" (2.2)
h(x) = 0

where

L(x,v) = f(x) + ]_Vlhl(X) (2.3)

where the Vl are undetermined multipliers or Lagrange multipliers. The paper did not

provide the conditions for when solutions of equation (2.1-2.3), were actual solutions of

the extrema problems or how to interpret the Lagrange muitipliers.

Samuelson (1947) gave several interpretations of 3.,agrange multipliers in an

economic setting. He developed approaches based on usit_g Lagrange multipliers to solve

different economic models and was the fu'st to clearly ider tify Lagrange multipliers as

shadow prices in an economic context. Kuhn and Tucker (1951) presented conditions for

relative extrema which use the Lagrange multipliers to establish optimality (ref. eq. 1.7 -

1.12). Since 1951 several constraint qualifications and e_ tensions to these conditions have

been proposed and are described in Bazaraa and Shetty (1979).

Dantzig (1963) brought forth the idea of "Post OpLimality Analysis" for linear

programs. Dantzig described post optimality analysis as the calculation of the sensitivity of

the optimum with respect to changes in the problem para_ neters. Sensitivity analysis has

been widely used in linear programming, a good survey of its use is provided by Gal
3



(1984).

Fiaccoetal. (1968,1974,1976,1983)hasalsodoneer,tensiveresearchin theareaof

sensitivityanalysis.His book"Introductionto Sensitivityard StabilityAnalysis" (1983)

coversthesignificantdevelopmentsin thefield of sensitivit)analysisprior to 1982.He

haspublishedmanyarticlesonsensitivityanalysis,andhast robablybeenthemostactive
researcherof sensitivityanalysisfor nonlinearprogrammingproblems.

In thefollowing subsections,wewill discusspastwt,rkrelatedto thedetermination

of sensitivity information for nonlinear programming proble ms. The methods we will

discuss range from the most simplistic approach of reoptimi;ation to more elaborate

approaches based on the Kuhn-Tucker conditions or advanc,'xl optimization methods.

2.1.1. Brute Force Methods

The simplest, and probably most used method, for izarameter sensitivity analysis is

to re-optimize the problem for the new values of the probler a parameters and plot the

trends. We will refer to this as the Brute Force method. Tl-e Brute Force method is

probably the most accurate of the methods available (for large variations in Ap, but can

experience round off and truncation errors when used to approximate derivatives) but it can

be computationally expensive even for small problems. Ex lmples of its use in the literature

are given in Arbuckle and Sliwa (1984) and Robertson and Gabriele (1987).

Armacost and Fiacco (1974) and McKeown (1980 b) describe a direct approach to

calculating parameter sensitivities based on the central difference approximation given

below

df* f(x*,p + Ap) - f(x*,p - Ap) (2.4)

_- 2Ap

Ox* x*(p + Ap) - x*(p - Ap) (2.5)

_P - 2Ap

This method requires the problem to be reoptimized (to a l'igh degree of accuracy) for two

different values of the parameter. McKeown states that th s method should not be used as a

primary method for the calculation of sensitivities because it is computationally expensive.

2.1.2. Kuhn-Tucker Method.s

To avoid the computational expense of reopfimiza ion, several researchers have

developed sensitivity methods based on the Kuhn-Tucke_ conditions (1.7) - (1.12). Two

types of algorithms have resulted, those that differentiate he Kuhn-Tucker conditions with

respect to p, and those that differentiate the optimality cot ditions for penalty functions.

4



In theformercategory,asetof Kuhn-Tuckersensiti'_ity equationshavebeen

derivedindependentlyby severalauthors(ArmacostandFiazco 1974, Sobieski et. al.

1981, McKeown 1980 b) and result in the following linear system of equations.

I 1
Vx(h,g)T 0 JL api J L _i J

= 0 (2.6)

This linear system can be solved for the sensitivity ¢f the design variables with

respect to a problem parameter _/3pi, and the sensitivity ot the Lagrange multipliers with

respect to Pi, a(v,u)/api. These can then be used to determi ae the sensitivity of the

objective function with respect to Pi by the following

df af af Tax (2.7)

For any change in the parameter Api, the new optirr um value of the objective

function or design variables can be estimated from the linear extrapolations

df

fnew = f(x*old) + Api
(2.8)

ax

X'new = X*old + Api
(2.9)

These equations are bounded by the assumption theft the active set remains the

same. An estimate of when the active set will change can t_e made by examining the

Lagrange multipliers of the active inequality constraints and linear approximations of the

inactive constraints. An inequality constraint should leave the active set when its Lagrange

multiplier goes to zero. The corresponding value of Api v here this occurs is predicted by

using the linear prediction

Api = _ J _ active set of constraints (2.10)_

t.al j
A new inequality constraint will enter the active set when its value goes to zero. A linear

prediction for when this happens is given by

Api -
gi

pi ax o

j _ active set of cons raints (2.11)



Wecanpredictthechangein activesetto occuratthesmalle;tvalue of Api obtained from

applying equations 2.10 and 2.11 to all constraints.

Fiacco (1974,1980,1983) has developed first and sex ond order extrapolation

techniques to predict the new value of the optimum when pa ameters are perturbed.

Armacost and Fiacco have developed a second order extrapc [ation for the objective function

value for the special case where the problem parameters are, :onfined to being the right hand

side values of the constraints. This provides second order r_:sponse information for the

objective function using the Lagrange multipliers and the pa "tials with respect to P of the

Lagrange multipliers.

Sobieski, et. al. (1981) observed that a more accurat,_ estimate of fnew given in

(2.8) can be obtained if the value of Xnew given in (2.9) is u,ed to calculate the value of the

objective function at a perturbation Api. This will be a mor_ accurate estimate for problems

where the constraints are well behaved and not highly nonli aear, but the objective function

is nonlinear.

Barthelemy and Sobieski (1983) derived the follow ng formula that can also be

used to calculate the sensitivity of the objective function wil bout the need to calculate

3x*/3p,

nineq
df* 3f

j=l

(2.12)

The formula can be derived by assuming that objective fun ztion behaves like the

Lagrangian in the region of the optimum. This formula ha _ also been derived by Fiacco

(1983) and McKeown (1980 b).

Diewart (1984) has developed some new sensitivit ¢ theories for dealing with the

addition of constraints at the solution of economic models before the solution of the

sensitivity equations. This analysis is important because tlaere may be short term

restrictions on modifications that can be made to the syste_r_. The paper presents a

recursive relationship that can be used to avoid refactorizi ig the sensitivity equations when

a new constraint is added to the problem. The paper also _resents equations that can be

used to calculate a second order estimate of the location o" the optimum, but this formula

requires third order derivatives which are seldom availabl_ in engineering.

2.1.3. Methods Based on the Extended Design Stace

Vanderplaats (1984 a, 1984 b) and Vanderplaats tnd Yoshida (1985, 1986) have
6



developedanapproachfor calculatingthesensitivitybasedo_ themethodof feasible
directions.Thesensitivitiesareestimatedby extendingthestt of designvariablesto

includetheproblemparametersfor whichafeasibledirectiov_is thendetermined.This
methodis knownastheExtendedDesignSpace(EDS)meth3d.Of themethodsdiscussed,

it hasthedualadvantagesof simplicityandefficiency. Van(terplaats(1984a)reportsthat

theEDSmethodcanhandlenearactiveconstraints,andis abieto leaveconstraint

linearizations.However,themethoddoessufferfrom asen,itivity to oneof its algorithm

parametersasreportedin VanderplaatsandCai(1987),andis unableto predictwhen
constraintswill leavetheactiveset.TheEDSmethodis alsosensitiveto therestrictionof

themovevectorto beof lengthone.

The EDS method can be used to assess the effect of perturbing several parameters at

the same time. It is also able to solve for sensitivities of degenerate optimal points where

either strict complementarity does not hold, or the constrainl gradients of the active

constraints are linearly dependent. The method seems to gi,'e good estimations for medium

sized perturbations of the parameters, but for small perturbations the the Kuhn-Tucker

method described above gives better results. Vanderplaats _md Cai (1987) also report that

there are some cases where the EDS algorithm can produce incorrect values of the

sensitivity derivatives.

Vanderplaats also proposes a second order approxiraation technique which is

interesting but requires second derivatives of the objective function and constraints. The

second order method solves a quadratic approximating pro!_lem for a specified value of the

parameter. The second order method will give good results; in a larger region about the

optimum than first order methods and does not appear to b,_ as sensitive to changes in the

active set as other methods are. However, there is still the problem of obtaining the

Hessians of the objective function and constraints and solv _ng the quadratic approximating

problem. Vanderplaats and Cai (1987) feel that the second order EDS algorithm is the best

option short of reoptimizing the problem for estimating se|_sitivities. But they caution that

the method should not always be used because of its high ;omputational cost.

2.1.4. Variable Sensitivities_

McKeown (1980 a,c) has developed sensitivity an dysis techniques for determining

the sensitivity of design variables subject to perturbations about the optimum. This

technique is based on an eigenvector analysis of the reduc _ Hessian matrix which applies

to a variant of our standard problem (1.1)-(1.6) where n( problem parameters exist. For

unconstrained problems the major eigenvector will point ia the direction of maximum

increase of the objective function, the minor eigenvector xAll point in the direction of

minimum increase of the objective function. For constrai aed problems the directions are

7



projectedon theactiveconstraints.This typeof informationmaybeusefulfor setting

tolerancesondesignvariables.

For McKeown's algorithm, the Hessian of the Lagrangian is needed but the

analysis is performed using only the reduced Hessian of the Lagrangian. An algorithm is

provided for reducing the Hessian. If the Hessian is to be evaluated numerically, an

algorithm is provided for the calculation of the reduced Hes:',ian of the Lagrangian directly.

This will reduce the number of extra function evaluations thtt are needed to conduct the

sensitivity analysis.

2.1.5. Other Work

Garcia and ZangwiU (1981) describe a Homotopy a _proach that can be used to

solve nonlinear programming problems. They state that this approach can also be used to

solve parametric nonlinear programming problems and is closely related to sensitivity and

perturbation analysis. Komija and Hirabay (1984) discuss _ome theoretical topics involved

in using a Homotopy approach to calculate parameter sensi ivities when the active set of

constraints changes.

Dinkel and Kochenberger and Wong (1983) have d_veloped an incremental

approach for solving for the sensitivities of geometric prog ramming problems. The

approach is to ask the user for the new value of the parameter and then make several steps

with corrections to reach that point. They found the smalh _rthe step they used the more

accurate the solution would be.

Jittorntrum (1984) examines solving for the sensitiAty of degenerate optimum

points using the Kuhn-Tucker sensitivity equations. He p-ovides a way to solve these

problems using directional derivatives which provides diferent answers for both positive

and negative perturbations in the parameters. Other theor_',tical issues for the use of

directional derivatives to calculate optimum parameter sen _itivities have been addressed by

Janin (1984), Gauvin and Dubeau (1983), and Rockafell tr, R. T. (1984).

Zolezzi (1985) examines the conditions under whL'h the Lagrange multipliers are

continuous under perturbations in the problem data. This is important because Kuhn-

Tucker sensitivity analysis uses Lagrange multipliers and rates of change of the Lagrange

multipliers to predict the rate of change of the objective ft nction. Comet and Laroque

(1987) establish conditions under which the values of the Lagrange multipliers are

Lipschitz continuous for perturbations in the problem datt.

Ganesh and Biegler (1987) have developed a sen ;itivity analysis based on the

reduced Hessian. The reduction is conducted by using tl'e equality constraints and the

8



implicit functiontheoremto reducethedimensionalityof the_Hessianmatrix thatneedsto
becalculated.Theirmethodisbeneficialwhenthereareeqtality constraintspresentin the

formulationof theproblem,becausetheyhavereducedthe|tumberof functionevaluations

requiredto find therequiredsecondorderinformationnum_rically. Theirmethoddoesnot

provide_vf_pwithoutcalculatingthefull Hessianof theLa,,xangian.

Rao(1987a) andGuang-YaunandWen-Quan(1985)havestudiedtheproblemof

dealingwith fuzzy constraintsandfuzzyobjectivefunction;. In theirwork theyfirst solve

acrispproblemthentheyattemptto calculatehowfar theytanrelaxconstraintswhile

improvingtheobjectivefunction. To usetheir techniqueth_useris requiredto specify
how muchviolationis allowedin theconstraints.Templeman(1987)reportsusingfuzzy

settheoryandoptimizationto designstructuresanddealwi,:huncertaintiesin theproblem.

Sandgren,Gim andRagsdell(1985)describeaprot lemformulationthatcanbe

usedto obtainoptimumdesignswith aminimumsensitivit2to uncontrollableparameters.

Theirapproachdoesnotusepostoptimalityanalysisbutus:samodifiedobjectivefunction
to dealwith theuncertaintiesin theproblemparameters.

Theareaof calculatingsensitivityderivativeswith :espectto designvariables( i. e.

thecalculationof gradientsof functions)hasbeenanareacf activeresearch.Thiscanlead

to significantsavingsoverusingfinite differencing.Thestructuraloptimizationcommunity

nowwidelyusessensitivityanalysiswhenthefinite elementmethodis usedto analyzea
structure.An excellentsurveyarticleof methodsof sensitivityanalysisfor structural

optimizationis providedbyAdelmanandHaftka(1986).

HaugandArora,et al. (1977,1979,1981)havedexelopedwaysto calculatethe

gradientsanalyticallyfor manystructuralanddynamicapplications.Manyof these
methodsaredescribedin thebookby Haug,KomkovandChoi (1985).

Sobieski,et al. (1981,1982,1983,1984,1985,198_,1987)hasbeenworking on

developingsensitivitytechniquesfor usewith multi-level,lecompositiontechniques.

Decompositionmethodsbreakthesolutionof a largeprobleminto asystemlevelproblem

andagroupof subproblems.Eachsubproblemis solved_lsinga specialformulationand

inputsfrom thesystemlevelproblem.A sensitivityanaly;isis performedon the
subproblemandtheresultsarefeedasinput to thesystemlevelproblem.The systemlevel

problemgathersall thesensitivitiesof thesubproblemsandthenbasedon theseinputsand
others,determinesthenext iterationof theprocess.Usually,theequations(2.6) - (2.9)are

usedat thesubsystemlevelto determinetherequiredsens_tivities,but somedifficulties

havebeenencounteredwhenchangesin theactivesetoccar.

9



SchmitandChang(1984)havedevelopedanextensionof Sobieski'swork and

derivedsensitivityequationsfor structuraloptimizationprobl_:ms.Theyderivedmore

restrictivelimits ontheallowableperturbationsthanthoseprc_videdby Sobieski.They

haveassumedthatsecondderivativesof theconstraintsarea,,,ailablewhich is trueof many

structuralproblemsbutmaynotbe truefor otherapplication;treas.

SchmitandChangformulatedtheirstructuraloptimiz:ttionproblem using reciprocal

variables and solved for the sensitivity of the dual problem. For their structural problems,

the Hessian of the Lagrangian was diagonally dominate and t ae Hessian of the objective

functio_ -,was analytically available. For this class of problents good results can be expected

even if the Hessian of the Lagrangian is inaccurate.

Buys and Gonin (1977) developed and implemented a sensitivity analysis

procedure for an augmented Lagrangian (AL) type code, VF i)IA. Their implementation is

encouraging because they make use of the approximations o' the Hessian of the Lagrangian

that were calculated during the solution of the original problt:m, The results that they

obtained using the approximate matrices were in very close _greement of those obtained by

using the exact matrices.

McKeown (1980 b) derives both the f'trst and second order Kuhn-Tucker parameter

sensitivity equations. He also provides a discussion of Fiat co's sensitivity for SUMT

penalty functions versus Buys and Gonin's sensitivity for/SL penalty functions. He

concludes that using sensitivity for AL penalty functions sb3uld be superior to sensitivity

by SUMT because AL produces better conditioned matrice:.

2.2. PREVIOUS WORK IN ESTIMATING PARAME_'ER SENSITIVITIES FOR

CHANGES IN THE A(_71"IVE SET.

When the active set of constraints changes, one of Iae underlying assumptions

made in deriving the Kuhn-Tucker sensitivity equations is -dolated. This can result in

inaccuracies in any extrapolations based on these sensitivit es since, in general, a change in

the active constraints will result in a different set of sensitivities. Accurate sensitivity

analysis in the presence of active set changes is also very innportant for efficient

convergence of the multi-level decomposition techniques l,roposed by Sobieski and, in

general, for an accurate representation of the local sensitiv ties.

In the following subsections, we will first discuss he different cases that occur as a

result of a constraint entering or leaving the active set, wh:tt effects these cases have on

sensitivity analysis, and how changes in the active set can be predicted. We will then

present examples of the sensitivities for the different case., which will also serve to indicate

how the different sensitivity algorithms perform.

10



2.2.1. Cases to Consider

When a new constraint enters the active set, or a currently active constraint leaves

the active set, we can expect a change in the sensitivity derb,atives. However, it is also

possible that the linear independence of the constraint gradic nts can also be affected. For

the discussion that follows, we define the following four ca:_,es that can result from changes

in the active set,

1. A constraint enters the active set and the constrai_tt gradients are linearly

independent.
2. A constraint leaves the active set and the constrai at gradients are linearly

independent.
3. A constraint enters the active set replacing an act ve constraint and the constraint

gradients are linearly dependent.
4. A constraint enters the active set and feasible re_ion disappears.

For Cases 1 and 2, we can expect discontinuities in the following derivatives when

the active set changes: d2f*/dp2, _)x*/0p, and 0u*/Op.

Case 3 is characterized by a discontinuity in the La_ range multiplier estimates which

causes a discontinuity in df*/dp. Since the active set chan[ es there will also be a

discontinuity in 0x*/0p. At the point where the constraints become linearly dependent, the

Kuhn-Tucker sensitivity equations become singular. Often what is happening for Case 3 is

that an exchange of constraints in the active set is about tc take place (i.e. the new

constraint may replace one of the constraints that is already in the active set ). If the

problem is not poorly formulated, we will find ourselves r roving through the degenerate

point as p increases or decreases and one of the constrainta will be dropped from the active

set.

Case 4 is characterized as a point from which p cat only be perturbed in one

direction. If p is perturbed in the wrong direction this wil cause there to be no feasible

region and there will be no solution for the optimization l_roblem with this value of p. Thus

we can only perturb p in the one direction that causes the optimum path to move into the

feasible region, and there will only exist a directional derivative for the problem in that

direction. Case 4 can be thought of as an overconstrainet! design where the designer

adjusted a parameter to the point where the design is no longer able to meet specifications.

2.2.2. Prediction of when the Active set will Ch__n.n_g_e_

Barthelemy and Sobieski (1983 a) have observed that the accuracy of extrapolations

of the objective function deteriorates rapidly when the ac_:ive set changes. From section

2.1.2, we saw that we can use equations 2.10 and 2.11 to, predict where the active set will

change, thus we can use this information to predict wher_ the extrapolations will deteriorate.

11



A problemwith boundingAp byequations2.10and2.11is thattheestimateisonly

good for the fh'st constraint that is encountered because once the active set changes the

search direction to the new optimum will change (the discom Ltinuity in/)x/0p). Thus, it

becomes very difficult to estimate when or which constraint _ll leave/enter the active set

second. This problem will be addressed in section 6.

The merit of using equations 2.10 and 2.11 to predk t when the active set will

change was discussed by Adelman and Haftka (1986). They state, "The effectiveness of

using this approach (equations 2.10 and 2.11) is still in dou9t with positive results being

obtained by Schmit and Chang (1984) and negative results t_eing obtained by Barthelemy

and Sobieski (1983 a)". We feel that the positive results theft were obtained by Schmit and

Chang are due to problem linearity and the changes in the a_tive set that they encountered

being case 1 and case 2 changes. We feel that the negative esults obtained by Barthelemy

and Sobieski are due to nonlinearity of the problem and alst, a case 3 change in the active

set taking place. As we will see later in this report, the con ;equences on sensitivity

derivatives of case 3 changes in the active set are often much more severe than case 1 and

case 2 changes.

2.2.3. An Example of Case 1 and 2

The effect of a constraint entering or leaving the act ive set (Cases 1 and 2) can best

be demonstrated by a simple example from Vanderplaats aid Yoshida (1985).

Minimize f(x) = 2Xl 2 - 2xlp +p2 + 4Xl - lp (2.13)

subject to: gl = 4p + Xl > 0 (2.14)

The Lagrangian will be

L(x,u) = 2Xl 2 - 2xlp + p2 + 4Xl -4p - Ul(4p + Xl) (2.15)

for p -- 0, the optimum is f(x*) = 0, Xl* = 0, gl = 0, and ll = 4.

This example will illustrate a constraint leaving the active set (case 2) as p increases.

The same example can be used to illustrate a constraint ent _n'ing the active set (case 1) if we

use a different starting value of p.

To demonstrate the methods we have talked about, we will calculate the sensitivity

estimates using four representative methods: the first and :_econd order Kuhn-Tucker

method, and first and second order extended design space method. We will conclude with

a comparison of the various methods used to solve the problem.

To solve for the sensitivity by Kuhn-Tucker equations we use equation (2.6) to

provide the following system of equations

12



whichyield

(2.16)

3Xl = -4 (2.17)

p_= -18 (2.18)

From equation (2.7) we can determine the sensitivity of the cbjective function with respect

to the parameter p to be,
df 3f _f T _Xl (2.19)
_.= _j._+ _ _ = -4 + 4 (-4) = -20

The active set will change when the Lagrange multiptier of the constraint goes to

zero, which can be estimated by equation (2.10)

- Ul -4 (2.20)
Ap = = -- = 0.2222

l) -18

therefore we are assured of reasonable results for extrapola ions for which Ap less than

0.2222.

For example, a linear approximation by equation (2 8) to estimate the value of the

new optimum produce
A df (2.21)

fnew = f* + dl_ = 0 + Ap(-20) = -20Ap

A quadratic estimate of the new value of the ohjecti ce function can be made by

evaluating the following equation found in Fiacco (1983), McKeown (1980 b), and

Sobieski and Barthelemy (1983)

d2f 32L 32L _x!_. _pl _p (2.22)= +
which produces d2f/dp 2 = 82. Using the quadratic estimat _ for the value of the objective

function we obtain

= A df d2f (2.23)
fnew f* + dP'_ + 0"5AI_dp_Ap=-Z0AP +4lAp2

The same predictions can be made by Vanderplaa: s' extended design space

algorithm. We begin by formulating the following directian finding problem for decreasing

values of p, where x2 represents the parameter p, and x3 i; an additional variable to ensure

that p has the required sign.

minimize 4Xl - 4x2 - c x3 (2.24)

13



subjectto: Xl + 4x2> 0

-x 2 - x 3 > 0

1- (Xl 2 + x22 )> 0

(2.25)

(2.26)

(2.27)

For c = 1000, the solution is Xl = .970142, x2 = -.2 _2536, x3 = .242536 which

yields the following estimates of the sensitivity derivatives

de__-20
dp

dx---L= -4
dp

(2.28)

(2.29)

For increasing values of p we obtain the following sabproblem

minimize 4Xl - 4x2 - c x3

subject to: Xl + 4x2 > 0

x2 - x3 > 0

1-(Xl 2+x22)>-0

(2.30)

(2.31)

(2.32)

(2.33)

When this problem is solved, the resulting sensitivi_ ies are sensitive to the value of

the parameter c. The solution for several values of c are pr _sented below in Table 2.1.

Table 2.1 The effect of "c" on EDS sensitivity

variable c=1000 c=500 c=100 c= tO c=1.0 c=0.0

xl -0.398E-2 -0.79E-2 -0.388E-1 -0._763 -0.624 -0.707
x2 0.99999 0.99996 0.99924 0.9611 0.9611 0.707
x3 0.99999 0.99996 0.99924 0.9611 0.9611 0.707
df/dp -4.016 -4.0316 -4.155 -5. 50 -7.196 -8.0

From this table it is clear that the choice of c will effect thc sensitivity derivatives. For

demonstration purposes c = 10 was chosen, this yielded tte following sensitivity

derivatives.

df= -5.1502 (2.34)
dp

dx---L= -.28756 (2.35)
dp

Vanderplaats and Yoshida (1985) report that the wdue of c has little effect on the

EDS algorithm. However Vanderplaats and Cai (1987) rt port that after further research the

value of c will effect the accuracy of the EDS procedure.

Using Vanderplaats second order extended desigr space algorithm provides exact

answers for the sensitivity for this problem.

14



Figure2.1 illustratestheaccuracyof various method,. We can see that when the

active set changes at Ap = 0.222 the predictions become less accurate.

x 54 FA_,s_fl__t Second or ter by KT
2

g 1
=

0

°'=_ -1 Actual optimun Second order EDS

© -2

-3 First order

-4 Kuhn Tucker- \,_r,.First order --"
\_ EDS withAp > I)

-5 .... ' ....... '\ .... ' .... , ._..__a_-a
-1.0 -0.5 0.0 0.5 1.0 1 .-" 2.0 2.5 3.0

g(1) leaves P

the active set

Figure 2.1 A plot of various optimal values o_ f with respect to p

Figure 2.2 illustrates the location of the optimum v_lue of xl as a function of p, as

predicted by various algorithms. When the active set chan[_es there is a discontinuity in the

rate of change of the optimum value of Xl with respect to 1: (i. e. aXl/ap is discontinuous at

the point).

Actual solution

J

> 1

Prediction
by feasible
directions

for Ap < 0

Predictic,n

by Kuhn Tl:cker

Prediction

by feasible
directions

for Ap > 0

-2
-1.0 -0.5 0.0 0.5 1.0

g(l) leaves

the active set
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Figure2.2A plot of variousoptimalvaluesof 41with respectto p

Fromfigures2.1and2.2 it is possibletodrawsomt conclusionsabouttherelative

performanceof thefour differentmethodsthatwereusedtc,obtainsensitivityinformation.

Usingthefirst orderKuhn - Tuckermethodweseethatthesolutionfollows theinequality
constraintin boththepositiveandnegativedirection.Thel_nearestimateof thenewvalue

of Xl is accuratefor smallchangesin p lessthan0.2222. 13utfor valuesof p greaterthan
0.2222,theactivesethaschangedandlargeerrorsin thepJedictionsareintroduced.This

is alsotruefor the linearpredictionfor thevalueof theobjectivefunction.

ThesecondorderKuhn - Tuckerestimateof thevalueof theobjectivefunctionis in

exactagreementin theregionwheretheactivesetremainsthesame,asseenin figure2.1.
Howeveraftertheactivesetchangesthepredictedvalueof theobjectivefunctionisapoor

predictorof theactualvalueof theoptimum.

Thefirst orderextendeddesignspaceprovidesthe;ameresultsasthefirst order

Kuhn-Tuckersensitivityfor decreasingvaluesof p. For ircreasingvaluesof p weseethat

thesearchdirectionchanges.Thisapproximationappearso overcometheconstraint

leavingtheactiveset,but it isapoorpredictorof theactualvalueof theoptimumfor small
variationsin p. For othervaluesof theparameter"c" we ,_ill obtainsimilarvaluesfor the

sensitivityderivatives.

Thesecondorderextendeddesignspaceprovidest_leexactvaluesof the locations

of theoptimumvalueof theobjectivefunction.This is becausetheapproximatingproblem
thatis formulatedis thesameastheoriginalproblem.

With thissimpleexamplewehavedemonstratedtheeffectof aconstraintleaving
theactiveseton thealgorithmsfor estimatingparameterscnsitivity. We canseefrom this

examplethat,aswemightanticipate,usingsecondorderestimatescanproducemore
accurateextrapolations.In fact,only thesecondorderext,;ndeddesignspacealgorithm

providedgoodresultsaftertheconstraintleft theactivesec.Howeverits usefulnessis
diminishedby theneedfor secondderivativeswhichcante computationallyexpensiveto

obtain.

2.2.4. Example of Case 3

Recall, that Case 3 is characterized by the adding c,f a new constraint to the active

set and the gradients of the active constraints become linearly dependent. When the

gradients of the constraints are linearly dependent the Lag_ange multipliers will not be

uniquely determined and the Kuhn-Tucker optimality con, litions cannot be uniquely
16



verified. This alsoresultsin adiscontinuityin theLagrangemultiplier sensitivities.

Whentheconstraintgradientsbecomelinearlydependeatfor avalueof oneof the

parametersit is assumedthatthis is only atemporaryconditiot, ff theuseris interestedin
theeffectof changingtheparameterontheoptimumthenthis i,fformationcanbeobtained

oneithersideof thesingularpoint.

Thisbehavioris demonstratedin thefollowing exampi
minimize: f = Xl2+ (P- 1)2

subjectto: gl = 3 Xl + 2 P - 10 >- 0

(2.36)

(2.37)

g2= 2xl + 3 P- 10>0 (2.38)

When P = 2, the minimum f* = 5 occurs at Xl* = 2. At this [ oint, both constraints are

active, and the gradients of the constraints are not linearly ind,_pendent. The Lagrange

multipliers will be in the family

Ul,U2 _ {3 Ul + 2 u2 = 4, Ul > 0, u2 > 0} (3.39)

At this point, df*/dp, 3x*/Op and _ul_p can not be ul _iquely determined. Results

for these derivatives can be developed if we consider positiw_ and negative changes in p

separately on either side of this degenerate point which we st_ail indicate by Ord3p+ for

increasing values of p and 3x/'bp- for decreasing values of p.

Figure 2.3 presents the sensitivity plots for this prolz|em. Figure 2.3 (a) and (b)

represent the fast order predictions of the new values of the Lagrange multipliers for this

problem. For this problem the linear predictions agree with the optimum Lagrange

multipliers. There is a discontinuity at Ap = 0.0, therefore t2_ere will only be directional

derivatives for these values. Figure 2.3 (c) represents linea_ predictions of the new value

of the objective function. Notice again that there is a discor tinuity in the slope of the

prediction and we can not determine df*/dp for Ap = 0. Th.:refore df*/dp will not exist for

this value of p. Figure 2.3 (d) represents the predicted locadon of Xl and we notice the

same situation as we have for df*/dp.

17
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Figure 2.3. A comparison of the Sensitivity.of a problem, vith a Linear Dependence in the
Constraint normals

2.3. SUMMARY

Sensitivity analysis is now routinely used in linear programming (Falk and Fiacco

1982) and most linear programming algorithms provide mxtules for the calculation of

sensitivities. This has not been the case for applications o_" nonlinear programming. The

most common use of sensitivity derivatives has been in th_ area of structural optimization

and in work done for decomposition methods. Some of tl_e reasons for this may be due to

a lack of understanding about how to perform sensitivity ;nalysis for nonlinear problems,

or to a lack of established procedures and supporting software that make the analysis more

readily available to the average user. The largest contributor to its lack of use is probably

the difficulty involved in implementing the current theory and methods.

An assessment of the methods discussed in Sectioa 2.1 and demonstrated in the

examples in Section 2.2.4 leads to the following conclusions about the current state of the

art of parameter sensitivity analysis:

. The Kuhn-Tucker sensitivity equations (2.6) accurately define the desired

sensitivities assuming no changes in the active constraints. To implement these

equations, however, requires second order intormation about the Hessian of the

Lagrangian, and the change in the gradient of :he Lagrangian with respect to the

parameter. Both of which are difficult to obta Lnreliably for all but a few special

cases.

18



,

,

The Extended Design Space (EDS) method pro,_ides sensitivity information

without the need for the second order informati_ m required of the Kuhn-Tucker

method. However, the sensitivity estimates are effected by a choice of a

formulating parameter c, and may not give the _,ame directions as those obtained

from the Kuhn-Tucker method.

Changes in the active constraint set will effect fl _e accuracy of any of the

methods and may limit the region upon which e xtmpolations to the design can

be relied upon.
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3. New method for Estimating Parameter Sensitivity

In this chapter a new method for estimating parameter :ensitivities based on the

Recursive Quadratic Programming(RQP) method is described. We begin with a brief

description of the RQP method and the advantages it provides for estimating sensitivities.

Next, we present the RQP based algorithm for estimating para neter sensitivity that exploits

the advantages of the RQP method discussed in the previous ,,ection. This is followed by a

comparison of the new method with existing methods based oa the type of info ,rgaation that

is being produced and the number of function evaluations req aired. Finally, a discussion

is presented of potential problems that may be encountered with the new RQP sensitivity

method.

3.1. RQP METHOD,_

The RQP method has been on the forefront of recent i esearch in optimization

algorithms and has been emerging as one of the most efficient methods available for

solving small to medium sized, general nonlinear programm ng problems (equations 1.1-

1.6). State of the art RQP methods have been developed by many researchers, such as,

Powell (1983), Schittkowski (1984), Gill, Murray and Wrigat (1986) and Bartholomew-

Biggs (1986,1987) to name a few. The algorithm has been tested against other general

nonlinear programming algorithms by Schittkowski (1980), Ecker and Kupferschmid

(1984), Belegundu and Arora (1985). The results of these t :,sts have shown the RQP

method to be one of the most efficient algorithms available ! or the solution of nonlinear

programming problems.

All RQP methods use the same basic strategy of lira arizing the constraints and

approximating the Hessian of the Lagrangian to form a qua_lratic programming (QP)

subproblem. The QP subproblem is then solved for the se:trch direction, s, and a new

estimate the Lagrange multipliers of the constraints. The (_P subproblem has the form

Minimize 1/2sTBs + sTVf (3.1)

subject to VhTs + h = 0 (3.2)

VgTs + g >--0 (3.3)

where B is an approximation to the Hessian of the Lagran ;ian which is normally

constructed by variable metric methods. The Lagrange m: dtipliers of the constraints for the

original problem (equations 1.1-1.6) are estimated by the __agrange multipliers of the

constraints in the QP subproblem (equations 3.1-3.3). Tie search direction s is then used

to calculate a new estimate of the optimum
20



(3.4)
xit+l = xit + OrS

where ot is determined by minimizing a line search penalty fu_iction P of the following

general form,

P(x,u,v,R) = f(x) + R.f_(h,g,u,v) (3.5)

where _ represents some combination of the constraints and he Lagrange multipliers. The

penalty function attempts to assure that both the objective fun:tion and the violation of the

constraints are reduced. As the method converges, the optimal step length ot generally

approaches 1.

RQOPT, a typical RQP algorithm, was used in our rt search. A summary of the

algorithm that is used by RQOPT is presented here, a gull de:_cdption of RQOPT can be

found in the users manual (Beltracchi and Gabriele 1987 a), ar Beltracchi (1985), Gabriele

and Beltracchi (1986,1987 b). There were several modificat ons that were made to RQOPT

for this work and these will be discussed in section 4.1 of tlqs report.

I Given x 0
An Approximation to H I

and algorithm parameters_

I
[ 1. Define the Active Set [

I
2. Calculate the Gradients a11.d"_update the Hessian Approxim_ tion ]

!
[3. Solve the QP Subproble_q

I
[4. Find the intial step lengtt_

I
[5. Conduct the Line Searci_"l

I
[ 6. Update Penalty Paramet,.'r"rs-]

[
[ Goto Step 1 I

Figure 3.1 Flow Chart for Rt_OPT

Figure 3.1 shows the basic steps that are used by the RQOPT program. The

RQOPT algorithm begins with an initial estimate of the lo,:ation of the optimum and several

algorithm parameters that have been set by the user. The first step of the algorithm is to

identify the active constraints, it is important that the proper constraints are chosen to be in

the active set as this can effect the rate of convergence of :he algorithm and, for our
21



purposes,theapproximationof theHessianof theLagrangian.Algorithm parametersare
availableto allowtheuserto controlwhichconstraintsareconsideredactiveduringthe

courseof theoptimization.

Thesecondstepis to calculatethegradientsof theobje_:fivefunctionandthe

constraintsthatarein theactivesetandthenupdatetheapproxmationof theHessianof the

Lagrangian.Theupdateof theHessianis performedusingtheBFSvariablemetricupdate

with modificationsspecifiedby PoweU(1977).

Thethirdstepis to solveaquadraticprogrammingsu!_problem(equations3.1-3.3).

TheQPsubproblemsgeneratedbyRQOPTaresolvedby OVI'QP,a specialimplementation
of thereducedgradientmethod.If thesubproblemhasno fea_iblesolution,theactivesetis

redefinedbydroppingconstraintsfrom theactivesetuntil a f_asiblesubproblemcanbe

found.

Theline searchfor thenextpointxit+1makesup the1ourthandfifth stepsof the

algorithm.An initial stepsizefor theline searchisdeterminedin thefourthstepsuchthat
constraintsnot in theactivesetarenotexcessivelyviolated._['heline searchisperformedin
thefifth step,andif astepof ot= 1satisfiestheline searchc_iteria, thenthatstepis taken

andtheline searchended.

Thesixth stepupdatesthepenaltyparametersusedir the linesearch,andthe

Lagrangemultiplierestimates.We thenreturnto startanoth,_,riteration.

Therehavebeenseveraldifferentvariantsof theRQPmethodproposed.Someof

thevariantsarediscussedin Beltracchi(1985). Themajorcifferencesin RQPalgorithms

arein theform of theline searchobjectivefunction(equatica3.5)andtheformulationsof

theQPsubproblem(equations3.1-3.3)thatareused.Resetrchcontinueson theseareas

butnooneformulationhasyet toproveitself clearlysub _r.

Someof thepenaltyfunctionsthathavebeenproposedfor (3.5)area11exact

penaltyfunction(Fletcher1984,Powell 1987),a12quadra!iclosspenaltyfunction

(Bartholomew-Biggs1980)or anaugmentedLagrangian(Chen,KongandCha
1987,Bartholomew-Biggs1985,1987).Thepenaltyfunction'sparametersareadjusted

aftereachiteration,andhowtheparametersareupdatedef_ectstheconvergenceof the

method.

Therearetwo basicphilosophiesfor formingtheQPsubproblemfor RQP

methods,the inequalityconstrained(IQP) formulationandequalityconstrained(EQP)
formulation. Themostcommonis theIQPapproachwhi_:husesasubproblemof theform

of equations3.1-3.3.TheEQPapproachlinearizesonly _subsetof the inequality
22



constraintsandconsiderstheseasequalityconstraintsin th,:subproblem(i.e,equation3.3

is consideredto beanequalityconstrain0.A discussionof theadvantagesand

disadvantagesof theIQPandEQPsubproblem formulation can be found in (Bartholomew-

Biggs 1987,1986,1982, Zhou and Mayne 1985, Schittkow ;ki 1983, Murray and Wright

1982, or Powell 1978).

Although the method does perform well, it does hamre some disadvantages. In

general, the method produces a series of infeasible points _ hile approaching the solution

which may pose a problem for some problem formulations RQP methods are also

sensitive to variable and objective function scaling and no _ood scaling algorithms have

been proposed. Finally, the best penalty function or algori_ hm for updating the penalty

parameters for the line search is still a subject of a great deal of research in these methods.

On the plus side, the following advantages have be ;n attributed to the method. In

terms of number of function evaluations, this method appe trs to be one of the most

efficient methods available. This has been demonstrated it any of the published

comparison studies in which codes for these methods patti :ipants. The method does not

require a feasible starting point which means there is no sp xfial phase 1 search employed as

in the GRG method or the feasible direction method. Alth 9ugh, as mentioned above, the

method is sensitive to variable and objective function scali ag, it is not sensitive to

constraint scaling. Finally, the RQP method provides an estimate of the Hessian of the

Lagmngian, which can be useful for other purposes, and it is very efficient at locating an

optimum when the starting point is close to the true optimt tin. Both of these last

advantages will be exploited in the next section which des,:ribes a method for sensitivity

estimation based on the RQP method.

3.2. PROPOSED ALGORITHM FOR PARAMETER 3ENSITIVITY

In reviewing the current methods for sensitivity analysis in chapter 2, we recall that

to employ the Kuhn-Tucker sensitivity equations required second order information about

the Lagrangian. For most engineering problems this type of information is often not

available in closed form, and estimation techniques would be prone to truncation and

numerical errors. Therefore, the application of these equ_ tions to a broad spectrum of

engineering applications is limited.

One proposal mentioned in chapter 2 to circumve_tt these problems was suggested

by Armacost and Fiacco (1974) and McKeown (1980 b). Their proposal to estimate the

sensitivities without estimating the higher order information was given in equations 2.4 and

2.5,
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df* f(x*,p + Ap) - f(x*, p - Ap)

"_'= 2 Ap

Ox* x*(p + Ap) - x*(p - Ap)

-'d-p- - 2 Ap

These equations represent the use of differencing techniques t o estimate the sensitivities,

where the values f(x*,p + Ap), x*(p + Ap), etc. are determine d by reoptimizing the

problem for the new values of the parameter. For most algor thins, particularly penalty

function based methods, the reoptimizations would be a non- a'ivial task requiring a

considerable number of function evaluations. However, this is the type of problem where

the RQP method is considered to be very effective. The goa_ of the new algorithm is to

exploit the strengths of the RQP method to estimate sensitivi ies by these differencing

techniques.

The RQP method possesses two characteristics that we felt can be exploited for

determining parameter sensitivities: (1) an approximation to the Hessian of the Lagrangian

is developed, and (2) if this approximation is exact (or close _then the RQP method quickly

and efficiently solve the reoptimization problem used in the .:lifference equations.

Essentially, if we can develop good Hessian approximation: ;, the RQP method is equivalent

to applying Newton's method to solve the Kuhn-Tucker con tditions for the perturbed

problems which should require only 1 or 2 iterations of RQP 1. The small number of

iterations, coupled with the fact that the RQP method should require only a one step line

search, should allow the reoptimizations to occur without tt e need for many function

evaluations.

Based on the above arguments, we propose the foll,)wing procedure to calculate

parameter sensitivity derivatives (for cases where there are no changes in the active set for

small variations in the paramters2).

Step 0. Given an optimal solution x*, f*, u*, an a_tive set of constraints, and an

approximation to the Hessian of the Lagrangi an, all achieved by convergence
of the RQP method.
(the * notation is used to denote optimum vatues)

Step 1. Perturb the fixed parameter Pi to pi+ = pi¢+ Api where Api is some small

perturbation to Pi

Step 2. Perform one complete iteration of the RQ}' method to find:
f+ the estimated value of the optimum objective function

x + the estimated value of the optimal of the c_esigu variables

1 We can expect only one or two iterations of RQP if we can adequ_,tely approximate the perturbed problem
with a quadratic function. Due to the small region of interest, a qua,lratic approximation should be good.

2 At points where the active set changes then modifications discus_ 'd in chapter 6 must be used to calculate

directional derivatives. 24



u+ the estimated value of the optimum Lagrange nultipliers

gj+ j _ Active set
(as predicted by the RQP method for Pi = Pi_ )

Step 3. Perturb the fixed parameter Pi to Pi" = Pi0 - AP i

Step 4. Perform one complete iteration of the RQP m_'thod to find:
f- the estimated value of the optimum objective i'unction

x- the estimated value of the optimal of the desi_ n variables

u- the estimated value of the optimum Lagrange multipliers

gj- j _ Active set
(as predicted by the RQP method for pi -- Pi)

Step 5. Obtain estimates for the sensitivity derivative s from the following central

difference approximations

df* f+ _ f- (3.6)

"d_ "= 2Ap

_)x* x + - x- (3.7)

"_ _- 2Ap

_)u* u + - u- (3.8)

"_ = 2Ap

Step 6. Estimate the sensitivity of the inactive const taints by

dg_ = g] + - gj- j _ Active set (3.9)

dp 2Ap

In addition to the algorithm described above, the fo lowing variants of the basic

algorithm are also proposed

1. Forward differencing, For this variant we woud omit steps 3 and 4 and then

use a forward difference approximation (equatk,n 3.10 instead of equations 3.6-

3.9) to approximate the derivatives

._= q+ _ q (3.10)
Ap

where q can represent f*, x, u, and the inactive constraints. We may want to

use this formulation because it requires less fun,:tion evaluations than the central

difference approximation. However, the forwa:d difference approximation is

more susceptible to roundoff and truncation err _rs and requires a more accurate

optimum to yield good sensitivity derivatives.

2. Forward differencing using 2 iterations of the RQP method. This variant is
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similar to variant1,butwewouldperform2 iter ttionsof RQOPTin step2.This

will yieldamoreaccurateestimateof theoptimun of theperturbedproblem.
Whenweusethisoptionwecanalsoupdatethe approximationto theHessianof

theLagrangian,or adjusttheperturbationApto ¢btainamoreaccurateestimate

of thederivatives.

° Central differencing using 2 iterations of the R(_P method. This variant would

perform two iterations of RQOPT in steps 2 and 4 of the basic algorithm. As in

variant 2 we can update the Hessian approximati3n during each iteration or adjust

the perturbation Ap to obtain a more accurate esttmate of the derivatives. This

variant is the most computationally expensive ol the proposed variants.

When there are many parameters that the user need _ to obtain sensitivities for then

the user may want to use variant 2 or variant 3 to calculate the sensitivities for the f'trst few

parameters. This will allow a more accurate estimate of th_ Hessian of the Lagrangian to be

constructed. After an accurate estimate of the Hessian of tae Lagrangian is built, the user

should switch to either the baseline or variant 1 to obtain tl _e sensitivities of the remaining

parameters. The Kuhn-Tucker sensitivity equations may _lso be used with the Hessian

approximation, after a good estimate of the Hessian of the Lagrangian is built. However

the Kuhn-Tucker sensitivity equations also require bVxl._i p be calculated and this term

may be subject to numerical noise because VxL = 0.

3.3. COMPARISON TO EXISTING METHODS

This section provides a derivation that indicates the: performance that is expected

from the new sensitivity algorithm. This section also presents a comparison between the

RQP based method and two existing methods described it chapter 2 based on the number

of function evaluations required to estimate the sensitivitics.

3.3.1. Dem0n_tration of Equival0n¢o of New M¢:hod to Kuhn-Tuck0r Method

This section will show that the finite difference ap9roximations obtained by the

proposed method are in fact equivalent to the sensitivities obtained by solving a modified

set of Kuhn-Tucker sensitivity equations. The modification of the Kuhn-Tucker sensitivity

equations involves replacing the Hessian of the Lagrangi;_n with the approximation B,

obtained from the RQP method.

The following assumptions are made for this deri,,ation; no equality constraints are

present, the base optimal point is stable 3, and the gradien:s are continuous. The derivation

3 A stable point is defined as a point where the acitve set does not t hange for small variations in the

parameters
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in thepresenceof equalityconstraintsdoes not change too much but the equality constraints

were left out to simplify the notation. If the base point is not stable then this derivation can

be used to find directional derivatives; this will be discussed at the end of this section. If

the gradients are not continuous then we cannot even be as::ured of an optimum point since

the assumption of continuity is also made for the derivatio: by the Kuhn-Tucker method.

We begin by restating the Kuhn-Tucker Sensitivity equations

rxT V2xL 0 (3.11)
_ V xg

_u + --0 J
We strive in this derivation to show that the proposed method is equivalent to estimating the

sensitivities using modified version of equation (3.11) that replaces Vx2L with B obtained

from the RQP method. If this is the case, then we can anti,:ipate the kind of accuracy to

expect and where the possible sources of error will result.

If we examine the equations (3.6-3.8), used by the proposed RQP sensitivity

method we see that these provide finite difference approxi_ nations to the sensitivity

derivatives of the objective function, design variables, and Lagrange multipliers with

respect to Pi. The derivatives are defined by the following

df* lim (f*(x*+Ax,pO+Ap) - f*(x*,pO) 7

"_ = ap-_O [" _pp )
(3.12)

Ox* 52 (.x*(pO+Ap) - x*(pO).7

Ap )
(3.13)

(3.14)

where

0u* lim (u*(p0+Ap) - u*(p0) 1"_== Ap_O _" _pp

pO represents our base point.

(3.15)

The RQP subproblem for the simplified case wher: the active constraints remain

active and there are no equality constraints can be written _s

min 1/2 sTBs + sTVx f (3.16)

subject to sTVxgj + gj = 0 j • Active Set (3.17)

where B is the approximation to the Hessian of the Lagrm_gian and the inequality
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constraintsgj areconsideredasequalityconstraints.

If weassume4asteplengthof o_= 1isusedin thel tnesearch(equation3.4)we

canrewrite equation3.4 in termsof x' - x as

s = x' - x (3.18)

where x' is the new estimate of x*. Substituting equation k 18 into equations 3.16 and

3.17 we obtain the following subproblem which is minimi red with (x' - x) as the design

variables

min 1/2 (x'-x)TB(x'-x) + (x'-x)TVxf(x,P + Api) (3.19)

(3.20)

(3.19-20) as

B(x'-x) + Vxf(x,p + Api) - u'Vxgj(x,p + Api) = _)

(x'-x)TVxgj(x,p + Api) + gj(x,p + Api) = 0 j _ kctive Set

Here u' represents the estimated value of the Lagrange mWtipliers at the new optimum.

Now we substitute into equation (3.21) the followi ng definitions of zero

VxL(x,p 0) = 0 = Vxf(x,p 0) - uVxg(x,P 0)

uVxg(x,p0+ Ap) - uVxg(x,p0+ Ap) = 0

This will yield

B(x'-x) + Vxf(x,p 0 + Ap) - u'Vxgj(x,p0+ Ap) - (Vxf(x,p 0) - uVxg(x,p0)) +

uVxg(x,p0+ Ap) - uVxg(x,p0+ Ap) = 0 (3.25)

Rearranging we obtain

B(x'-x) - u'Vxgj(x,p0+ Ap) + uVxg(x,p0+ Ap) +

(Vxf(x,p 0 + Ap) - uVxg(x,p 0 + Ap))- (Vxf(x,p0)- uVxg(x,p0)) = 0 (3.26)

Rearranging further and writing in terms of the Lagrangiaa function we obtain

B(x'-x) - (u' - u)Vxgj(x,p 0+ Ap) + VxL(x,u,P 0 _-Ap) - VxL(x,u,P 0) = 0

(3.27)

Now we will divide equation (3.27) by Ap and take the limit as Ap goes to zero to

4 A common assumption for RQP methods
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(3.23)

(3.24)

(3.21)

(3.22)

subject to (x'-x)TVxgj(x,P + Api) + gj(x,p + Api) = 0 j _ Active Set

We can now state the optimality conditions for the subpro_lem represented in equations



obtain

lim
Ap--)O

B(x'-x) - (u' - u)Vxgj_x,P 0+ Ap) + VxL(X,U,P 0+

Ap

_P) - VxL(X'U'p0) =0

(3.28)

Using the additive and multiplicative properties of the Limit fur ction we obtain

lim (x_.__-_ _ lira (u' - u ,_lirn
B Ap--)0 _. Ap ) t_p-_0 _ Ap )Ap-_0 (Vxgj(x'p0+ z''p)) +

lira (V xL(X,U,p0+ AP) - VxL(X'U'p0)t = 0 (3.29)t_p_0 Ap

Now we can use the definition of a derivative of some functiot_ h with respect to some variable p

Oh lira h(p+Ap)-h(p) (3.30)

_'_= t_p--)0 Ap

Applying the definition of 3x/0p, Ou/0p to (3.29) we obtain

3VxL(X'U'p0)- = 0 (3.31)

B_p On _7_0Vxgj(I'p0+Ap)+--OP

If we use the standard assumption that the functions are twice continuously differentiable

we can state

lira Ap) Vxgj(x,P 0)
zxp_0 Vxgj(x'P° + =

And now substituting equation (3.32) into equation (3.31) v,e obtain

(3.32)

B_p VxgJ (x,p°) ___ OVxL(X,U,p°).=0 (3.33)+- _p

The equation above (equation 3.33) represents the first part _)f the Kuhn-Tucker sensitivity

equations with the approximation B instead of the Hessian _f the Lagrangian.

The next step in this derivation is to examine equati _n (3.22) in terms of p0 + Ap

we obtain

(x,_x)TVxgj(x,p0 + Ap) + gj(x,P 0 + Ap) = 0 j _ _,ctive Set (3.34)

Now we can subtract gj(x,p) = 0 from equation (3.34) to obtain

(x,_x)TVxgj(x,p0 + Ap) + gj(x,P 0 + Ap) - gj(x,p0) = 0 j _ Active Set (3.35)

If we divide equation (3.35) by Ap and take the limit as AI' goes to zero we can write
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lim /.(x'-x)TVxgi(x,p0 + Ap) + gj(x,p 0 + Ap) - gj(x,p0)_= 0 (3.36)

Ap_0 _. Ap Ap )

Using the additive and multiplicative properties of the limit function we obtain

lim lim t_x'-x) lim (g_(x,p 0 + Ap) - gj(x,p0)]=0
Ap_0 VxgJ (x'p0 + Ap), Ap__0_W) + Ap_0[ Ap

/

(3.37)

Again using the definition of a partial derivative of (equati)n 3.30) and we obtain from

equation (3.37)

z_p_0 Vxgj(x'p0 + Ap) • _i_ + = 0 (3.38)

Using the results in equation (3.32) we obtain

oxVxgj(x,p 0) • _ + = 0 (3.39)

Which represents the second part of the Kuhn-Tucker sen_;itivity equations.

Now equations (3.33) and (3.39) can be assemble41 into matrix form to yield

71
IVxBT-_xg] _u + =0 (3.40)

Equation 3.40 is the same as equation 3.19 with the exce[tion that equation 3.40 uses the

approximation, B, of the Hessian of the Lagrangian in phce of, Vx2L, the true Hessian of

the Lagrangian. Referring to (3.40) as the modified Kuhr-Tucker equations, we see that

the proposed method is principally a difference approxim_tion to the modified Kuhn-

Tucker equations. This implies that if B is a good approximation of the Hessian of the

Lagrangian, and a proper choice can be made for the diffeence parameter that minimizes

truncation and roundoff errors, then we can produce sensitivity derivatives without the

need to obtain or estimate the second derivatives required of the Kuhn-Tucker method.

Several examples were tested to see if the sensitivi ty derivatives estimated by the

RQP method with one iteration converged to the value of ;ensitivity derivatives estimated

by the Kuhn-Tucker sensitivity with the approximate Hessian. From these examples we

observed that the sensitivity derivatives delivered by the rew RQP algorithm are close to

the derivatives approximated by the Kuhn-Tucker metho_t with the Hessian approximation.

One of these examples is presented here to show this agrt ement.
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Testproblem2 (whichis describedin theappendix)is u;ed to demonstratethe

equivalenceof thenewmethodto theKuhn-Tuckermethod."I7_e starting point of x0 =

(1.1,1.1,1.1) was used. RQOPT(with the BFS update and H 0 = I) solved the problem in

one iteration and yielded the following approximation to the He _sian matrix 5

i! 2 2-_Happrox = 3 223J

If we use this Hessian approximation to solve for the sensitivit t of parameter I by equation

(3.40) we will obtain the following system of equations

=032
2 3 - 1 _x3
110

k ul

the solution of these equations yields

_x
= (9.33333,-7.66666,-2.66666)

(3.41)

(3.42)

(3.43)

_11 = (-4.66666)

The RQP based sensitivity algorithm calculated the f, _llowing sensitivity derivative

approximations.

_x

--(9.33333,-7. 66666,-2. 66666)

(3.44)

(3.45)

_Ul = (-4.66666)N?
The above derivatives were calculated using the RQSEN p_ogram (described in section 4

and the appendix of this report) with a perturbation of Ap --:0.0001 (using central

differencing, equations 3.7,3.8) and one iteration of RQP 1_) solve the perturbed problems.

If the base point, p0, is unstable (degenerate) we c_n use a similar derivation to

calculate directional derivatives, which will be useful for p_e.xlicting the sensitivities of the

design variables and Lagrange multipliers. The use of directional derivatives will be

discussed in section 6.

5The Hessian approximation for problem 2 is not close to the true t_essian of the Lagrangian ( given in the

appendix of this report). This is because the starting point was cho,_en to produce a poor approximation so
we could clearly indicate the performance of the RQP sensitivity me daod in comparison to the Kuhn-Tucker

sensitivity method with the approximate Hessian from RQOPT
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3.3.2. Performance Comparison with Other Methcds

This section compares the RQP based method to tv, o of the methods discussed in

chapter 2; the Kuhn-Tucker method, and the extended design space (EDS) method. The

comparison is based on Table 3.1 which examines the number of function evaluations

required by each method to calculate parameter sensitivitie _ df*/dp, 0x'fOp and 0u*/_Op

(assuming that when the optimum is found that the Kuhn-q'ucker conditions have been

checked, this means that VxL and the Lagrange multiplier, are known before the

sensitivity analysis is performed). It is assumed that the ot jective function and constraints

are interrelated 6. It is also assumed that problem linearity t,r problem form are not

exploited in calculating parameter sensitivities.

The first row of Table 3.1 represents the methods l_sed in this comparison. The

second row represents the number of function evaluations _equired to calculate the

sensitivity derivatives for the first parameter. Subsequent mrameters may require fewer

evaluations for some methods.

The first column of Table 3.1 represents the numix r of variables present in the

problem. The second column represents the amount of w(,rk required to solve for the

sensitivities using the Kuhn-Tucker sensitivity equations. The third and fourth columns

represent the number of function evaluations required by tlte EDS algorithm. Column 3

represents the first order method and column 4 the second order method. The fourth

column, RQP 1, indicates that forward difference approxir_mtions were used to calculate the

gradients. The fifth column RQP 2, also uses forward dif_erence approximations but 2

iterations of RQOPT are allowed during the reoptimizatioi_. The fifth column RQP 3

represents the amount of work required for the base line algorithm using central difference

approximations. The sixth column RQP 4 represents usin; central difference

approximations with 2 iterations of RQOPT.

If the objective function sensitivity is calculated b3 equation 2.12

(df*/dp = Of/bp - u bg/3p) then assuming that objective Ind constraint information can

both be obtain in one call, only one extra function evaluation is required to determine Offbp

and bg/_tp. However, if one wants the design variable anc Lagrange multiplier sensitivity

then some other equations must be used.

6The value of the objective function and all of the constraints are ca culated by one subroutine
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Kuhn-Tucker EDS(1st) EDS(2nd) RQP1 RQP2 RQP3 RQP4
n2 3n (n+l)2+ 3(n+l) n+l 21+2 2n+l 4n+2
-_-+ _--+ 1 1 2 2

1 4 1 5 2 4 3 6

2 6 1 9 3 6 5 10
3 10 1 14 4 8 7 14
4 15 1 20 5 10 9 18
5 21 1 27 6 12 11 22
10 66 1 77 11 22 21 42
15 136 1 152 16 32 31 62
20 231 1 252 21 42 41 82
40 861 1 902 41 82 81 162

Note: RQP 1 uses forward difference approximations and one item:ion to solve the perturbedproblem
RQP 2 uses forward difference approximations and two iterations to solve the perturbed problem
RQP 3 uses central difference approximations and one iterat;on to solve the perturbed problem
RQP 4 uses central difference approximations and two iterat ions to solve the perturbed problem

Table 3.1 Comparison of Various Algorithms for _se in sensitivity analysis

The following observations can be drawn from thi; table.

1. For the Kuhn-Tucker sensitivity equations, most of the work in finding the

parameter sensitivity is involved in the calculati, m (by finite differences) of the
Hessian of the Lagrangian. However, after the -_rst parameter sensmvaty _s
determined the cost of evaluating successive ser_sitivity derivatives is reduced to

(n+l) extra function evaluations.

2. For the f'trst order EDS algorithm, the work req lired to calculate the parameter
sensitivity does not increase with problem size. However, this algorithm will
not deliver/)u/_kp and this algorithm may not be able to find the correct value for

Ox/3p. This will mean that df*/dp will also be i aaccurate with this method. If
the problem is fully constrained the accuracy of Ox/-dp is better but the method

may still provide inaccurate derivatives.

3. For the second order EDS algorithm most of th_ work is in the calculation of the
Hessian of the objective function and the Hessim of the constraints. The work
involved for calculation of successive pararnete_" sensitivities only requires

approximately n+2 extra function evaluations. I'his algorithm requires the
solution of a quadratic approximating problem _br every new value of the

parameter supplied by the user.

4. For the RQP 1 algorithm (forward differencing) is the most efficient of the RQP
methods proposed and seems to be much more efficient than the Kuhn-Tucker
algorithm. The work required to calculate succ,_ssive parameter derivatives is
constant (n+l function evaluations). This algorithm will perform well when B is

a good approximation and the perturbation Ap s properly chosen.

5. The number of function evaluations for the RC_P 2 algorithm (forward

differencing and 2 iterations of the RQOPT algorithm) grows linearly. The work

required to calculate successive parameter deri,_,atives is constant !2.n+.2 function
evaluations). The work for calculating success ve parameter sensmvatles may be
reduced because the Hessian approximation wiil improve after each parameter
sensitivity derivative is approximated, which _ ill eventually reduce the amount
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of work requiredto solvetheperturbedproblem.

6. For theR P 3 al orithm(centraldifferencing)thework involvedgrowslinearly
Q.... gt-,^..l-¢,..,,,_uccessivenarameterderivativesisconstant(2n+2

andtheWOrKIor u-,_,um,,,,E, o r
function evaluations). An indication of nonlinearity of the sensitivity derivatives
can be indicated by checking for second derivatives of the functions as follows

d2f f+ - 2f* + f- (3.46)

_p2 = Ap2

This approximation of the second derivatives may r!ot yield accurate results but it
may be able to indicate that there is curvature preseat in the problem. Another
advantage of using central differences occurs when the active set changes and

directional derivatives can be approximated.

7. The RQP algorithm with central differencing and 7! iterations of RQOPT is the
most expensive of the proposed RQP algorithms. 'the work required to calculate
successive parameter derivatives is constant (4n+2 function evaluations). The
work for calculating successive parameter sensitivities will be reduced if we

allow updating of the Hessian approximation durittg the RQP iterations, as less
work will be required to solve the perturbed probl,:m when the Hessian

approximation is improved.

The above discussion dealt with the number of requi_ ed function evaluations to

calculate the parameter sensitivities. We did not account for any of the other overhead such

as solving the QP subproblem for the RQP method or solving a quadratic approximating

problem for the second order EDS algorithm.

The overhead associated with using the Kuhn-Tuck_:r sensitivity equations is

relatively small after the first parameter sensitivity is calcul_ ted, this is because if a

factorization (i.e. LU) is used to solve the Kuhn-Tucker ser.sitivity equations then the

amount of overhead becomes o(n) flops. The overhead for solving the RQP subproblems

will also be realitively small if a good implementation of the RQP method is used (i.e. a

proceedure propossed by Gill et. al. (1987) requires anly e(n) flops). The overhead for the

first order EDS method will also be relatively small. How_:ver the overhead for the second

order EDS method could be large depending on the proble n.

In summary, the RQP based methods are competit: ve with the existing methods.

All variants of the RQP based method require approximate ly the same number of function

evaluations for small problems (n<5), but considerably k ss for larger problems (n>5).

3,4, PQTENTIAL PROBLEMS

One of the main issues that needs to be investigated concerns the Hessian

approximation: will the approximation converge in practi_:e as predicted by the theory? If

34



convergencehasnottakenplacethenweneedtoinvestiga_ehowto improvetheHessian

approximation.Somemodificationsthatcanbemadeto ot_tainamoreaccurateHessian

approximationarediscussedin Chapters4 and5.

As with theestimationof any gradient by finite difi'erences, the perturbation step

size Ap and the nonlinearity of the problem will effect accLxacy of the derivative

approximation. Rules from Gill, Murray and Wright (1983) or Adelman, Haftka, and Iott

(1986) can be investigated as a means to select the step siz,_ Ap. An automated selection

proceedure for Ap should be investigated after the initial RQP sensitivity algorithm is

tested.

When using the forward difference option the choi :,e of Ap is even more critical. If

Ap is too small and the optimum of the problem is not kncwn exactly then when the

perturbed problem is solved we may only be seeing a bettt:r estimate of x* being found

rather than an estimate of the solution of the perturbed proglem. This will cause the

derivative approximations to be inaccurate. If Ap is too la-ge then we may only be

obtaining trend information for the problem.

All optimization programs incorporate some kind (,f convergence criteria that is

based on the relative change in the design variables. This _topping criteria will effect the

calculation of the sensitivity derivatives for all available methods, because there is a

common assumption that the base point is a true optimum The central difference

approximation may be less sensitive to inexact solutions because the solution of the

perturbed problems will be of a similar degree of accuracy.

When solving the quadratic programming subproblem some type of convergence

criteria is normally used. How small this tolerance is will effect how much work is needed

to solve the subproblem (Nash 1985). During the early stages of the optimization it is not

advisable to locate the exact solution of the QP subproble_n as this may be too expensive.

However once the program is in the region of a minimum the solution of the subproblem

needs to be accurate. Therefore, we expect to use a tight ,:onvergence criteria for our QP

solver during our reoptimizations.

3._. SUMMARY

We have proposed a method and some variants b_ sed on the RQP method for

estimating parameter sensitivities which provides sensitiw ty estimates nearly equivalent to

the Kuhn-Tucker method. The method avoids the need fi,r calculating second derivatives

and its efficiency is competitive with current methods. The accuracy of the method
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dependson two majorpiecesof information,thequalityof theHessianapproximation

providedby theRQPmethod,andthestepsizeof thedifferen,:eparameterusedin the
differenceformula. Both theseaspectsof themethodwill be tiscussed in the following

chapters.
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4. Implementation

This chapter will discuss the implementation of the ne_¢ parameter sensitivity

method described in chapter 3. The program used as the basi; for testing the new method

was the RQOPT program which is an implementation of an active set RQP method

(Beltracchi and Gabriele, 1987). The discussion begins with a discussion of the

modifications made to RQOPT to perform the necessary calculations, and ends with a

description of the software system developed to calculate par_ meter sensitivities.

4.1. MODIFICATIONS TO RQOPT

Most of the modifications to RQOPT were concentrat _ in one of the major areas of

concern for the new sensitivity algorithm, the Hessian approfimation. These modifications

are discussed in subsections 4.1.1 and 4.1.2. The line search of RQOPT was also

modified to yield a smoother convergence to the problem solation and this is discussed in

subsection 4.1.3. The final modification discussed in subse_:tion 4.1.4, provided the

option of using a different variable metric update to yield a more accurate Hessian

approximation

4.1.1. Implementation of a Factorized BF$ Variable

Variable metric updates have been successfully used for the past 20 years for

unconstrained optimization and have been used successfully for approximately the past 10

years for constrained optimization. Variable metric updates _ttempt to build an

approximation to the Hessian matrix using only first order ir_formation, and solve for the

search direction from the following equation

s = B'IVf (4.1)

where B represents the approximation to the Hessian, Vf the gradient of the objective

function, and s the search direction of the design variables. Variable metric updates have

been provided in the literature for approximating either the i_tverse of the Hessian or the

Hessian itself.

Variable metric updates all have the same basic form. They begin with an

approximation to the Hessian matrix, and then update the approximation by some rank one

or rank two correction. The form of the update is normally

Bnew = Bold + vvT + wwT (4.2)

where v and w are calculated as some product of the old H_ ssian approximation, the last

search direction, and the change in the gradient of the objecl ive function.

Several different forms of equation 4.2 have been p'oposed. The most popular
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variablemetricupdatehasbeentheBFS(alsoknownasthe"BFGS)whichwasproposedin

1970simultaneouslyby Broyden,Fletcher,ShannoandG,)ldfarb. TheBFSupdatehas

beenshownto bethebestgeneralpurposevariablemetric_pdate.

Oneof theproblemsassociatedwith theBFSvarialte metricupdateis thatit is

effectedby theproblemscaling.ShannoandPhua(1978)naveproposedaselfscaling
versionof theBFSupdate.Itsusein aRQPalgorithmwa._investigatedby VanderHoek

(1980). He foundtheself scalingvariantwith thesecondl)ren-Spedicato(Oren1974)

switchseemedto performthebestwith theparticularRQPalgorithmthathewasusing.

In themid 1970'sseveralauthorsproposedupdatirg theLDLT factorsof the

Hessianapproximationwith aprocedurethatcouldbeuset_to stabilizetheBFSupdatein
termsof thenumericalnoiseencounteredin thecalculationof theupdate.With theLDLT

updatewecanbeassuredthattheHessianapproximationlemainspositivedefinite,thiswill
assurethatthesearchdirectionsthataregeneratedfrom (4 1)aredownhill. Additionally,

finding thesearchdirectionfromequation4.1becomesa smple matrixcalculationwhen

usingtheLDLT update

Whenvariablemetricupdatesareusedfor RQPm,:thodsit is nomaallypreferred

thattheapproximationof theHessianof theLagrangianb_:updatedinsteadof itsinverse.
This is becausesolutionof theQPsubproblemrequiresth_Hessianapproximation.The

BFSvariablemetricupdateis usedby mostof thesuccess-'ulimplementationsof theRQP

method.

TheBFSupdatethatwasusedin RQOPTis defin_'xlas

Bnew = Bold - (zB°10)(ZBgld)T ÷ w w T
zTBoid z wTy

where z and w are defined as

(4.3)

z = Xnew - Xold
(4.4)

y = VxL(xnew,Vnew,Unew) - VxL(Xold,Vnew,Unew J
(4.5)

1 T
O=< 0.8 z Bz

"[z"_z _-z_y

if zTy > 0.2 zTB z
(4.6)

otherwise

w = O y + (1 - O)Bz (4.7)

Where the O term in equation 4.6 and 4.7 was defined b3 Powell (1977) to help maintain

positive definiteness of the Hessian approximation, unde' normal operation O is equal to

one. The Hessian approximation is guaranteed to be pos tive definite if zTw is greater than
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zero. TheHessianapproximationis notupdatedby RQOPTif zWwis lessthanzero.

For thisstudy,theLDLT updatefor theBFSvariablenetric (definedin equation

4.3)asdescribedbyGill andMurray (1978)wasimplement_:d(wherez andw were
calculatedby equations4.5and4.7). Thisupdateusesseverzdmatrix transformationsto

achieveastableupdate.Theactualupdateof theHessianapl,roximationis performedwith

aproceduredescribedbyFletcherandPowell(1974)andextendedby Gill, Murray,and

Saunders(1975).

In additionto thestabilityof thisupdaterelativeto nl,mericalnoise,asdiscussed

above,theLDLTupdateprovidesaconvenientmeansfor eslablishingaresetcriteriafor the

Hessianapproximation.Theneedfor aresetof theHessianapproximationis discussedin

thefollowing section.

4.1.2 Condition Number Reset

Occasionally, due to numerical noise or a highly not linear problem, the Hessian

approximation may become singular or indefinite. When this happens we can no longer be

certain that the resulting search directions will satisfy the de_cent property that is assumed

by the RQP. The only means to recover from this situation is to reset the approximation to

some known positive definite matrix, which is generally the identity matrix. Early version

of the BFS update were reset every n+l iterations but this i: a conservative approach that

will sometimes erase good information and slow the conve_ gence of the algorithm. The

current thinking is to use a less conservative reset criteria t_at is based on a condition

number estimate of the matrix with the hope that useful haft _rmation built up in previous

iterations is used for more iterations and should result in Ix tter convergence.

The original version of RQOPT reset the Hessian agprox imation every time the

active set changed or every n+l iteration. A change in the active set results in a different

QP subproblem to be solved and it was felt that the Hessiaa approximation would no

longer be valid. Using this conservative reset criteria woud prove unacceptable if we were

using RQOPT to perform sensitivity analysis. With this r_;set criteria, we risk resetting the

Hessian approximation just before the optimum is reached, and would be left with only a

few iterations of the method upon which to build an approximation. Thus we may have a

very poor Hessian approximation when it comes time to l:erform the sensitivity analysis.

The reset criteria adopted has been used successfully by several other algorithms

(Powell 1985, Schittkowski 1983, Arora and Tseng 1987 ). The new reset criteria resets

the Hessian approximation when the estimate of the cond tion number exceeds a fixed limit.

This estimate can be found by computing
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(4.8)
cond(H)est = drain

where drain and dmax are the smallest and largest values of the D xaatrix in the LDL T

factorization.

Using this reset criteria has led to a more stable update y_elding faster convergence

for the RQOPT program and more accurate estimates of the Hessian of the Lagrangian.

4.1. 1" n f L MI" li E "

The Lagrange multiplier estimates are an integral part o| building the Hessian

approximation. The value of the Lagrange multiplier estimates are used as inputs to the

variable metric update to approximate the Hessian of the Lagra_tgian function.

The original version of RQOPT calculated the Lagrangt multiplier estimates as the

Lagrange multipliers of the constraints in the QP subproblem. This value of the Lagrange

multiplier estimate is a valid estimate of the true multipliers when a step of o_ = 1 is used in

the line search (Gill and Murray 1979). When this occurs, the estimates should converge

to the true Lagrange multipliers as the problem converges.

A problem can arise, however, in the first few iteratio Is of RQOPT. At the

beginning of a search it is possible that a Lagrange multiplier _stimates produced by the QP

subproblem will be several orders of magnitude larger than trle value of the Lagrange

multiplier. If the line search then makes a small step (tx _ 1), the large value of the

Lagrange multiplier estimate may bias the updating of the Hessian approximation in such a

way that new approximation only sees the constraint associated with the large Lagrange

multiplier. It may then take several iterations before the Hes _ian approximation is

corrected.

RQOPT was modified to use the following linear int_,rpolation to update the value

of the Lagrange multiplier estimates after the line search is c_mpleted (4.9)

Unew = uold + 0_(Uqp - Uold)

When a step length of ct =1 is used in the line search (equation 3.4) then formula 4.9

updates the Lagrange multiplier estimates to be the estimate s delivered by the QP

subproblem. This update was also used by Schittkowski _1983).

The procedure for updating the Lagrange multipliel estimates helped yield a

smoother convergence of the Hessian approximation, beck, use we were able to more

accurately represent the Lagrangian function when we we1 e performing the approximation

updates.
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4.1.4. SR1 update

The SR1 update is a variable metric update that do;s not require exact line searches

for quadratic convergence, where as the BFS update requi'es exact line searches for

quadratic convergence. Because the RQP method seldom performs exact line searches, it

was felt the SR1 update may be able to obtain a better approximation of the Hessian of the

Lagrangian.

A table describing the differences between the BFL and SR1 update is presented

below

update
BFS

SR1

Advanta_s DisadvaJitages

Sell Correcting
Stable (maintains positive def'miteness)

Has a good performance history

Requires exact line searches

Does not require exact line searches update rr,ay be undefined and it is not

guarante,'.d to maintain positive definiteness of
the Hessian Approximation. There is not alot of
literature on the performance of this update.

Table 4.1 A comparison of the BFS and S R 1 variable metric updates

The stability of the BFS variable metric update has led to its use in almost all RQP

implementations. However Cha and Mayne (1987) report _at they have tested the SR1

update and found exact convergence of Hessian approximations for quadratic functions.

Although the SR1 update lacks the stability of the BFS UlXiate, we were interested in

comparing the performance of the 2 updates in terms of the Hessian convergence. If the

SR1 update delivers better Hessian approximations than th.' BFS update then we will have

to further investigate methods to stabilize the SR1 update.

The SR1 update is defined as follows

Bnew = Bold I (B°IdY - z)(B°IdY - z)T
yT(BoldY - z) (4.10)

where y and z are obtained from equation 4.4 and 4.5. Thi s update is undefined when the

denominator is equal to zero. The SR1 update may be undef'med even for positive definite

quadratic problems. This problem was addressed by Brayt 9n and Cullem (1979), Cullem

and Brayton (1979).

The symmetric rank one (SR1) update was implemented in both a factored (LDL T)

and unfactored form. In our implementation if the absolute value of the denominator (in

equation 4.10) is less than some small number we use the BFS update which is described

in section 4.1.1.
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EventhoughtheSR1updatemaybeundefined,it hashe verynicepropertyof not

requiringexactline searches.This is importantbecausein theRQPmethodwedonot

performexactline searches,andtheBFSvariablemetricmeth_xiassumesexactline
searches.PoweU(1986)clearlydemonstratesthedetrimentalfffect of inexactline searches

on theBFSmethod.Theperformanceof theSR1updatefor :.olvingquadraticproblemsis

suchthataftern updates(providingthatall updatesare define, t) the Hessian approximation

will have converged to the true Hessian. Thus we may obtain a better convergence of the

approximation of the Hessian of the Lagrangian if we are abl_: to use the SR1 update.

Some preliminary results were obtained comparing the BFS and SR1 variable

metric updates and these are discussed in section 5.3.

4.2 THE TI N FA Y TEMT A MATI ALLYCALCULATE

PARAMETER SENSITIVITIES

In this section we provide a brief overview of the sot_ware system created for

studying parameter sensitivities. The software system is made up of three major pieces: a

problem preparation package RQCRE, the RQP algorithm u,_;ing the modifications

described in the preceding section, RQOPT, and an interacti ce program RQSEN, that acts

as a post processor/sensitivity analysis module for the RQOI irl" program. The RQOPT

program was an existing program and has been documented previously (Beltracchi and

Gabriele, 1986). The RQCRE and RQSEN programs were created for this study and will

be briefly described in the following paragraphs. A more d_tailed discussion of these

systems is provided in the appendix.

4.2.1 The ROCRE Sup_tx)rt System.

The RQCRE program is set up to be used as an interactive tool for use with the

RQSEN system. The purpose of the RQCRE program is t_ remove the chance of errors in

the problem formulation. The RQSEN program requires approximately 30 arrays to be

dimensioned which are automatically dimensions by RQC]iCE. The RQCRE program also

automatically writes the calling program and data files required by the RQSEN system.

The RQCRE program requires the user to provide imsic information about the

problem such as the number of variables, number of equaiity constraints, number of

inequality constraint, and number of parameters that will be studied.

The RQCRE system then produces a main calling program, a shell of the function

subprogram t used to define the objective function and the constraints, and a data file used

for input into the RQSEN system (sample output is provided in the appendix). The

1 The RQCRE program is not designed to allow the user to enter d_;finitions of the objective function or
constraints, these definitions must be entered manually into the cod_ that was generated by RQCRE.
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RQCREprogramalsosetsup thedefaultvaluesfor thealgorithmparametersusedby

RQOFr.

4.2.2 The ROSEN pro_arn_

The RQSEN system was set up as a pre and post proces,'or for the RQOPT

program. The RQSEN system was set up to be an interactive u.,er friendly program for

performing the following basic functions;

1. The system can be used to solve optimal design problems

2. The system can be used to calculate parameter sensit- vities

3. The system can be used to conduct studies of large ', ariations in problem

parameters

4. The system is also set up to create sensitivity plots cf that can be used to

perform trade off studies.

A sample session with the RQSEN system illustrating these olfio ns is presented in the

appendix.

The RQSEN system requires a calling program and a iunction subprogram

(defining the objective function and the constraints) to be written in FORT RAN2. The

RQSEN system also requires the user to define a data file that contains the algorithm

parameters, and the initial values of the design variables and design parameters. The user

can then direct the RQSEN program to study the sensitivities of only certain parameters.

The RQSEN program first produces optimum design s. Once the problem has been

optimized the RQSEN system can be used to produce paranr:ter sensitivity derivatives,

which can then be used to study the effect on the optimum of large variations in the

parameters. The RQSEN system is also set up so that an external graphing program can be

used to create plots of the optimum sensitivities for large vaJ iations in the parameters can be

studied. A typical plot is presented in figure

2 The RQCRE system can be used as an aid in creating the calling pr(gram and function subprogram.
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Figure 4.1 A plot of the Sensitivity of the Optimum ol test problem 1 to p(3)

Plots similar to this one can also be generated for the design variables, Lagrange

multipliers and values of the constraints. These plots can the_a be used to assess the

characteristics of the problem (such as nonlinearity and changes in the active set). Using

these plots to assess the characteristics of the problem will Ix discussed in the results part

of chapter 5. Plots similar to figure 4.1 are presented in the _ppendix for problems in the

test set.
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5. Numerical Experilaents

This chapter describes the numerical experiments t hat have been conducted to date

on the new sensitivity method. We begin by discussing tlie initial test set used and any

special features of the selected problems. Next, we discu:;s testing that has been performed

comparing the accuracy of the known Hessian to the appr _ximations obtained, which

includes comparisons of the BFS and SR1 updates. In th,: third section, the accuracy of

the sensitivity derivatives obtained with the new sensitivity algorithm is assessed against

the known results. This section also compares the effect ,_f choosing a central or forward

difference formula and the effect of the step size Ap. The final section presents some

conclusions drawn from this initial testing.

5.1. INITIAL TEST SET

A two phase testing program has been formulated for studying the effectiveness of

the new method for estimating parameter sensitivity. The first phase was to develop a set

of test problems for which the parameter sensitivities coul5 be exactly determined using the

Kuhn-Tucker equations. This required that any second older information needed could be

determined analytically. Choosing problems of this type ',could allow a direct comparison

of the sensitivity results produced by the new method with the exact sensitivities and also

allow the comparison of the BFS and SR1 Hessian appro,dmations. From this study we

hope to develop some insight into several questions conc¢ ruing the algorithm such as:

proper choices for algorithm parameters (i.e. the proper stze of Ap), what is the most

reliable Hessian approximation, how close does the Hessian approximation have to be to

achieve good results, does updating the Hessian approxin _ation during the sensitivity

analysis significantly improve the estimate, and which of :he variants (forward/central

difference approximations with one or two iterations of Rt_)PT) described in chapter 3

provides the most consistent results.

The second phase of the testing would consist of testing the algorithm against a set

of engineering problems where second order information would not be available. Here the

results obtained from the sensitivity algorithm would be c_mpared to actual reoptimization

results to assess its accuracy. In the time allotted for this study, only the first phase of

testing has been completed and is reported on here.

The problems making up the initial test set are pre_ented in the appendix of this

report. We have experimented so far with 4 test problem; that have a total of 12

parameters. The problems possess both linear and nonlir_ear behavior. We expect to

expand this test set in the near future. Plots of the optimt_ m sensitivity for selected
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problemsandparametersarealsopresentedin theappencix.

5.2. CONVERGENCE OF THE HESSIAN APPROXIMATION

The derivation given in section 3.2.1 showed that equivalence of the new method

with the Kuhn-Tucker method depends on the accuracy of the Hessian approximation

obtained from the RQP method. Using this initial test set we hope to observe how closely

the Hessian approximation comes to the exact Hessian an d draw some initial conclusions

on its importance to the accuracy of the results.

A measure of the closeness of the Hessian approximation to the true Hessian can be

defined using the Frobenius norm as

EH = IIH - Happrox IIF (5.1)

This measure has been used in the past to compare the co wergence of different variable

metric updates (Dennis and Schnable 1983).

For test problem 1 the true Hessian of the Lagran;ian is

.64 206]H=[ 2 0

From the RQOPT program we obtained the following Hcssian approximation with the BFS

update

1 I" 1.50017 -.540310
BFS=L-.540310 2.34388 ]

which gave us a eHBFs = 1.396.

Using the SR1 update from the same starting point, we obtained the following

Hessian approximation

h I" 2.63194 -.002930
SRl=L-.002930 2.61374 ]

with gives a _HSR1 = 0.0164. This represents a large improvement in the closeness of the

Hessian approximation. However, even though the Hes, ian approximation for the SR1

update is much better than the Hessian approximation foi the BFS update the problems

were solved in the same number of iterations (and functic n/constraint evaluations) of

RQOPT.

The results given above were obtained with a valae of _ =1.1. The _i parameter

controls the size of the active set during the course of an t_ptimization; a large _i will cause

more near active constraints to be considered as part of Ire active set, a small value of _5will
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allowonly truly activeconstraintstobeconsidered.Havingthe7_ropersetof active

constraintsidentifiedearlyin theoptimizationcouldeffecttheac,:uracyof theHessian

approximation.To testthis, a largervalueof _(_ =10.1)wascl_osenandtheproblem

resolvedobtainingthefollowing Hessianapproximations

H FS 1"2.329 .3227B =[_.3227 2.264 ]

H R1 i"2.6394 .00093 ]S =1..00093 2.5990
thevaluesof eHBFS= 0.6019andeHSR1= 0.00174wereobtaiaed.Theseimproved

HessianapproximationsresultbecauseRQOPTwasableto ideatifythecorrectactivesetof
constraintssooner.With thelargevalueof _RQOPTrequiredthesamenumberof

iterationsto solvetheproblem,butrequiredmoreconstrainte,,aluations.

Anotherimplementationissuethatneedsinvestigation:oncemswhetherthe

Hessianapproximationobtainedfrom theoptimizationshouldbefurtherupdatedduringthe

reoptimizationsperformedto estimatethesensitivities.To st[dy theeffectof allowing
Hessianupdatesduringthereoptimization,thesensitivitywith respectto parameter3 in

problem1wasestimatedwith thisoptionenabled.TheHessi_tnapproximationthatwas
usedatthestartof thesensitivityanalysisis theHessianappr_)ximationthatwasobtained

with theBFSupdateand&= 1.1. After estimatingthesensitvity, weobtainedthe

following Hessianapproximation

H i-2.63975.00013 "lBFS=L.00013 2.59957-1
with eHBFS= 0.00053.This indicatesthatthereis apossibilityfor improvingtheHessian

approximationif weallowupdatingduringthesensitivitYalialysis.

Testsfor problem2 werealsoperformed,whosetrte Hessianof theLagrangianis

givenby

H 5 1
15

Usingthestartingpointprovidedin theproblemdescripticn,weobtainthefollowing value

of theHessianapproximation(from RQOPT)whenweus,"theBFSupdate

[-4.4976 1.9976 0.497631I_IBFS=I1.9976 2.9976 1.9976
t.0.49763 1.9976 4.4976

with EHBFS= 3.000. WhenweusetheSR1updateweot tain thefollowing valueof the

Hessianapproximation
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4.5 2.0 0.5 ]HSRI = 2.0 3.0 2.0
L0.5 2.0 4.5

eltSR1 = 3.0. If we allow the Hessian matrix to be updated _¢hile estimating the sensitivity

of Pl with a Ap = 0.0001 we obtain

i-4.9448 1.0070 1.1749]HBFS=|I.0070 4.9964 0.9665
L1.1749 0.9665 4.3990

[!11]HSR1 = 5 1
1 5

with EHBFS = 0.6541 and with I3HSRI = 0.00. This represems a significant improvement

of the Hessian approximations, particularly when the SR1 update is used.

If we calculate the sensitivity of P2 and use the SR1 update we also obtain exact

convergence of the Hessian approximation. However if we use the BFS update we do not

obtain exact convergence but an improvement similar to theft of the f'trst problem is

achieved.

For Test problem 3 the Hessian of the Lagrangian i s

li0 0 0]

800
H= 0100

0O4

If we use the starting point that was provided in the problem description, the approximation

to the Hessian of the Lagrangian (form RQOPT) using the BFS update is

1- 9.785 -0.4657 -2.502 -0.9879

H /-0.4657 7.7556 -0.5500 0.0174
BFS=_-2.502 -0.5500 4.062 0.7464

I_-0.9879 0.0174 0.7464 2.1579

with £HBFS = 7.76. If we use the SR1 update to solve the problem then we obtain the

following approximation to the Hessian

F 11.9744 -0.02493 -0.04194 0.02212
• /-0.02493 7.9792 -0.03037 0.01095

nSRl=]-0.04194-0.03037 9.9679 0.00222
L0.02212 0.01095 0.00222 4.01399

with a eHSR1 = 0.130. This represents a major improverr_ent in the Frobenius norm.

For Test problem 4 the Hessian of the Lagrangian is

_6.72-4.0-2.0 6.4 -2.0

-4.09.4006-1.2 -6.2 624 ]
It

6.4 -6.2 -1.29.3418 ]410 J/ -2.0 6.4 -2.0-4.0 6.2688
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usingthestartingpoint thatwasdefinedin theappendix,t',QOPTwith theBFSupdate

yieldsthefollowing Hessianapproximation

F6.280-3.963-1.417 6.458-1.924"]
/-3.963 8.052 -0.561-6.247 5.775 1HBFS_-I.417-0.561 1.548-0.932-1.449

6.458 -6.247 -0.932 9.3465 -4.024-1.924 5.775 -1.449-4.024 5.974

with eHBFs = 3.6226.

When we attempted to use the SR1 update, the He _sian approximation became

nearly singular after 5 iterations and the Hessian approxirr_ation was automatically reset to

the identity matrix by RQOPT. RQOPT delivered the foil.awing Hessian approximation

[-4.6611 -4.8848 0.1290 5.2854 -3.5 _29 7
|-4.8848 7.5178 -.1721 -7.0517 4.7340 ]HSRl_ 0.1290 -0.1721 1.0046 .1862 -.1245

5.2854 -7.0517 0.1862 8.6328 -5.0;_96-3.5329 4.7140 -.1245 -5.0996 4.4(_94

with £HSR1 = 9.307. The inaccuracy of this Hessian apprcximation results because a total

of only 7 iterations were needed to solve the problem, and a reset occurred after the fifth

iteration. Therefore, only 2 iterations could be used to build the Hessian approximation.

In the near future we will investigate why the Hessian approximation became nearly

singular after the 5 th iteration.

A summary of the results of this section are prese_ted in the Table 5.1 where e0

represents the error between the true Hessian and the idenky matrix used at the outset of

the optimization. Using the BFS update we see that we v, ere not able to converge to the

exact Hessian but the inaccuracies do not seem to be large. As mentioned before, this may

be due to RQOPT not using exact line searches which the BFS method assumes. Allowing

updating of the Hessian approximation during the sensitivity analysis seems to improve the

estimate of the Hessian of the Lagrangian.

Using the SR1 update we were able to obtain bett,',r estimates of the Hessian of the

Lagrangian for both problem 1 and 3. For problem 2 the Hessian of the Lagrangian that

was produced by the SR1 update had converged in a proj_:cted or reduced sense. The

inaccuracies in problem 4 are due to a near singular point which is discussed above.

Problem e0 £BFS £SR 1 £BFS with updating
1 2.291 1.396 0.061 0.0005
2 7.348 3.0000 3.0 0.654
3 15.93 7.76 0.130 5.186
4 23.276 3.6226 9.307 1.698

Table 5.1 A comparison of the Frobenius norms c f the Hessian approximations
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5.3. RESI,YLTS

This section presents a comparison of the sensitivitlt derivatives calculated by the

new method with the known sensitivities for the problems m the initial test set. We also

present a means that can be used to compare the accuracy (,f the sensitivity derivatives

graphically.

The measure for accuracy that will be used was al,,o used by Sandgren (1977).

Sandgren compared the closeness of the optimum design l:_int generated to known

optimum point, and the closeness of the value of the know_l optimum objective function

value to the generated value of the optimum plus a penalty for any violated constraints.

Sandgren defined the following measures

ABsf  * 
tABS[f(x)]

for f(x*) _ 0

for f(x*) = 0

(5.2)

where f(x*) is the true value of the optimum and f(x) is th,: value returned by the

algorithm. The total error is calculated as

nineq neq
8 t=Ef+ Z <gj> + Y-(hi)

j=l i=l

where < a > = (0, if a > 0 1-a if a < 0).

(5.3)

The Et measure is lsed because it does not bias any

constraints.

The relative error in the x vector is defined as

_] n r xi -xi*] 2 (5.4)i=15-"L xi* JEx=

in equation 5.4 if xi* is equal to zero then the relative erm- in xi is defined as the value of

Xi.

We will define the relative error in the gradient (dt*/dp) of the objective function as

follows
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ed_/@

d_[-,-v---est- df__.*']

AB_ df* d

L
dr*

for df*

(5.5)

df*

for d'_" = 0

We will define the relative error in ax*/_)p and 3u*f0p in the san Le manner as ex and denote

these values as eOx*/_p and e0u*fdp respectively. Eight digits of :tccuracy were maintained

in calculating the relative errors.

The optimal sensitivities for the test problems were calc_dated using the Kuhn-

Tucker method with exact derivatives. Once the optimal sensiti dties for the problems were

known, experiments were conducted using RQSEN on the initi d test set. Both the forward

difference and central difference variants of the RQP sensitivity algorithm were tested with

large and small values of perturbation for the parameters. For _11 cases, RQOPT 1 was

allowed to perform two iterations to optimize the perturbed prot)lem. However, there were

some instances where RQOPT required only one iteration to mt et the convergence criteria.

A spreadsheet was used to automate the calculation of the relati,_e errors in the derivatives

using the formulas given above. Summary tables showing the relative errors in the

calculation of the derivatives will be presented for each of the t_roblems.

Plots of the optimal sensitivities for large variations in the parameters were also

created for all of the parameter sensitivities that were studied. ['he interesting plots will be

included in the appendix of this report. These plots can be used to help asses the

nonlinearity in the sensitivity derivatives, and to help to unden tand the effect of changes in

the active set.

The rest of this section presents tables and figures showing the relative accuracy of

the sensitivity derivatives. A brief discussion of the results fcr each problem is offered.

5.3.1 Problem 1

Problem 1 possesses three parameters for study. Sensitivities of the objective

function, design variable, and Lagrange multipliers for each parameter were estimated

using the four variations of the basic algorithm. The results a_ compared against the exact

sensitivities in Tables 5.2 - 5.7. In most cases, the estimated sensitivities agree with the

known sensitivities with few exceptions. As might be expectexi, the central difference

approximations in all cases provides better estimates than the forward difference

approximations. No strong conclusions with respect to the choice of Ap can be drawn

from this problem. For parameter 1, both sizes of Ap provide exact sensitivities. For

1The gradients of the objective function and constraints were calculated t _sing central and forward difference

approximations. 51



parameter2, the largervalueof Approvidesbetterresultswt ile for parameter3, the
smallervalueof Approvidesthebestresults.A reviewof thesensitivityplot for this

parameter(figureA.2) showsthatthesensitivitiesfor thisparameterarenonlinear.

In conclusion,for thisproblem,usingacentraldiffelenceapproximationwith either

stepsizefor Ap resulted in no significant errors in the sensivvity estimates.

Kuhn Tucker {_¢ntral Difference Appro:__

Method AP =2% relative error AP=0.1% relative error

df/dp 1.0000000 1.00000000 O.OOE +O0 1.00000000 O.OOE +O0

dxl/dp 0.0000000 0.000000 0.000E+00 0.000000 0.000E+00
dx2/dp 0.0000000 0.000000 0.000E+00 0.000000 0.000E+00

ex O.OOE+O0 O.OOE +O0

0.000E+00
dul/dp 0.000E+00

du2/dp O.OOE + O0

-0.2000000 -0.200000 0.000E+00 -0.200000
0.4000000 0.400000 0.000E+00 0.400000

_u O.OOE +O0

Table 5.2 Central Difference Approximations to the Paramcter Sensitivities for problem 1

parameter 1

Kuhn Tucker

Method

dffdp 1.0000000

dxl/dp 0.0000000
dx2/dp 0.0000000

EX

Forward Difference Approximations

AP =2% relative error AP=0.1% relative error

1.06000000 -6.00E-02 1.00300000 -3.00E-03

0.000000 0.000E+00 0.000000 0.000E+00
0.000000 0.000E+00 0.000000 0.000E+00

O.OOE+O0 O.OOE +O0

dul/dp -0.2000000 -0.2000301 - 1.503E-04 -0.2006318 -3.159E-03
du2/dp 0.4000000 0.39984547 3.863E-04 0.39693215 7.670E-03

eu 4.15E-04 8.29E-03

Table 5.3 Forward Difference Approximations to the Panmeter Sensitivities for problem 1

parameter 1
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KutmTucker Central Difference Apt roximafi0n8

Method AP =2% relative error AP=0.1% relative error

df/dp -0.3000000 -0.30000000 O.OOE+O0 -0.30000000 O.OOE+O0

dxddp 0.1000000 0.10000011 -1.100E-06 0.10000359-3.590E-05
dx2/dp -0.2000000 -0.20000030 3.000E-06 -0.20000320 - 1.600E-05

e,x 3.20E-06 3.93E-05

dul/dp -0.1304000 -0.13040090 -6.902E-06 -0.13040262 -2.009E-05
du2/dp 0.0008000 0.00079973 3.363E-04 0.00080051 -6.325E-04

eu 3.36E-04 6.33E-04

Table 5.4 Central Difference Approximations to the Para neter Sensitivities for problem 1
parameter 2

Kuhn Tucker Forward Difference _\pproximations

Method AP =2% relative error AP=0.1% relative error

df/dp -0.3000000 -0.30000000 O.OOE+O0 -0.30000000 O.OOE+O0

dxl/dp 0.1000000 0.10004811 -4.811E-04 0.10000681 -6.810E-05
dx2/dp -0.2000000 -0.20017630 -8.815E-04 -0.20000665 -3.325E-05

ex 1.00E-03 7.58E-05

dul/dp -0.1304000 -0.13061831 - 1.674E-03 -0.12851547 1.445E-02
du2/dp 0.0008000 0.00114555 -4.319E-01 0.00999551 -1.149E+01

eu 4.32E-01 1.15E+01

Table 5.5 Forward Difference Approximations to the Par uneter Sensitivities for problem 1
parameter 2
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Kuhn Tucker

Method

df/dp -0.4000000

dxl/dp 1.2000000
dx_dp 0.6000000

EX

Central Difference Approxin_ations

AP =2% relative error t, P=0.1% relative error

-0.40000000 O.OOE +O0 -C.40000000 O.OOE + O0

1.19995460 3.783E-05 1.19999990 1.000E-06
0.60007142 -5.952E-05 0.60000018 -3.000E-07

7.05E-05 1.04E-06

dul/dp 0.4048000 0.40501856 -5.399E-04 (,.40480055-1.359E-06
dugJdp -0.5896000 -0.58972201 -2.069E-04 -(,.58960030 -5.088E-07

eu 5.78E-04 1.45E-06

Table 5.6 Central Difference Approximations to the ParameteJ Sensitivities for problem 1

parameter 3

Kuhn Tucker

Method

Forward Difference Approximations

AP =2% relative error AP=0.1%

df/dp -0.4000000 -0.36400000 9.00E-02 _).39820000

dxl/dp 1.2000000 1.20029290 -2.441E-04 t.20001670
dx2/dp 0.6000000 0.59484082 8.599E-03 ).59973857

ex 8.60E-03

relative error

9.00E-02

- 1.392E-05
4.357E-04

4.36E-04

dul/dp 0.4048000 0.39514199 2.386E-02 0.40367242 2.786E-03
du2/dp -0.5896000 -0.57797893 1.971E-02 -(_.59207284 -4.194E-03

eu 3.09E-02 5.03E-03

Table 5.7 Forward Difference Approximations to the Parame :er Sensitivities for problem 1

parameter 3

5.3.2 Problem 2

Tables 5.8 - 5.11 present results obtained for the two parameters of problem 2.

There is some significant disagreement between the known md estimated sensitivities for

parameter 1 in each of the variations tested. The inaccuracies seem to occur due to the

Hessian approximation not converging. The cause of this is Iikely due to RQOPT not

using exact line searches, which the BFS variable metric update assumes. In this case,

possibly the SR1 update would produce better results. The w,sults for parameter 2 are

excellent for all variations.

The major conclusion to draw from this problem is th at the convergence of the

Hessian approximation can be a critical factor in the success _f the new method.
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KuhnTucker Central Diff¢rence App-oximation_

Method AP =2% relative error AP=0.1% relative error

df/dp -7.0000000 -7.00000000 -1.43E-11 -7.00000000 -1.43E-11

dxl/dp 2.0888889 2.1593080 -3.371E-02 2.1598250 -3.396E-02

dx2/dp -2.1666667 -2.1459360 9.568E-03 -2.1459879 9.544E-03
dx3/dp -0.9166667 -1.0143604 -1.066E-01 -1.0139152 -1.061E-01

ex 1.12E-O1 1.12E-O1

dul/dp -4.6666667 -4.5219200 3.102E-02 -4.5311680 2.904E-02

eu 3.10E-02 2.90E-02

dg2/dp -6.00000000 -6.1756450 -2.927E-02 -6.1738965 -2.898E-02

2.93E-02 2.90E-028
_gable 5.8 Central Difference Approximations to the Parar _eter Sensitivities for problem 2

parameter 1

Kuhn Tucker

Method

Forward Difference Approximations

AP=2. % relative error AP=0.1% relative error

df/dp -7.0000000 -7.00000000 -1.43E-11 -7.00000000 -1.43E-11

dxddp 2.0888889 2.2087420 -5.738E-02 2.2379818 -5.738E-02
dx2/dp -2.1666667 -2.1161414 2.332E-02 -2.1100841 2.332E-02
dx3/d p -0.9166667 -1.1367750 -2.401E-01 -1.1301356 -2.401E-01

ex 2.48E-01 2.48E-01

dul/dp -4.6666667 -4.4230730 5.220E-02 -4.3803787 5.220E-02

eu 5.22E-02 5.22E-02

dg2/dp -6.00000000 -6.43386710 -7.231E-02 -6.3725934 -7.231E-02

eg 7.23E-02 7.23E-02

Table 5.9 Forward Difference Approximations to the Pan meter Sensitivities for problem 2
parameter 1
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Method

KuhnTucker Central _ ff_rence Approximafion_

AP =2% relative error AP=0.1% relative error

df/dp

dxl/dp 0.33333333 0.3333333 1.000E-08

dx2/dp 0.33333333 0.3333333 1.000E-08
dx3/dp 0.33333333 0.3333333 1.000E-08

ex 1.73E-08

dul/dp 2.33333333 2.3333333 1.429E-08

eu 1.43E-08

dg2/dp 2.00000000 2.0000000 0.000E+00

eg O.OOE +O0

12.00000000 12.00000000 O.OOE + O0 12.00000000 O.OOE + O0

0.3333333
0.3333333
0.3333333

2.3333335

1.000E-08
1.000E-08
1.000E-08

1.73E-08

-7.143E-08

7.14E-08

2.0000000 0.000E+00

O.OOE +O0

Table 5.10 Central Difference Approximations to the Parar aeter Sensitivities for problem 2

parameter 2

Kuhn Tucker Forward Difference A_

Method AP=2. % relative error AP=0.1% relative error

df/dp 12.00000000 12.00000000 O.OOE+O0 12.00000000 O.OOE +O0

dxl/dp 0.33333333 0.3333333 1.000E-08 0.3333333 1.000E-08
dx_dp 0.33333333 0.3333333 1.000E-08 0.3333336 1.000E-08
dx3/dp 0.33333333 0.3333333 1.000E-08 0.3333333 1.000E-08

ex 1.73E-08 1.73E-08

dul/dp 2.33333333 2.3333333 1.429E-08 2.3333335 1.429E-08

eu 1.43E-08 1.43E-08

dg2/dp 2.00000000 2.0000000 0.000E+00 2.0000000 0.000E+00

eg O.OOE +O0 O.OOE +O0

Table 5.11 Forward Difference Approximations to the Parameter Sensitivities for problem 2

parameter 2

5.3._ Problem 3

Problem 3 possesses 3 parameters for study, and _he results are presented in Tables

5.12 - 5.17. Again, the central difference approximation_ produce the better results, with

the small step perturbation better than the large step pertu,-bation for the fast two

parameters. The accuracy of the estimates are good in c¢ mparison with the known

sensitivities.
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Kuhn Tucker
Method

C_nwal Difference Approxilnations

AP =2% relative error AP=0.1% relative error

df/dp -8.0000000 -8.0000001 -8.75E-09 - ILO000001 -8.75E-09

dxl/dp - 1.1471984
dx2/dp -0.3342830
dx3/dp -0.2279022
dxddp -3.5403608

ex

-1.1551824 -6.960E-03 -L.1485459 -1.175E-03
-0.3360517 -5.291E-03 -q).3355475 -3.783E-03
-0.2189132 3.944E-02 -_).2265911 5.753E-03
-3.5312020 2.587E-03 - L5390270 3.767E-04

4.05E-02 6.99E-03

du1/dp-67.3428300
du3]dp 55.4605800

EH

-67.5423370 -2.963E-03 -6 r.3399900 4.217E-05
55.6363930 -3.170E-03 5L5155000 -9.903E-04

4.34E-03 9.91E-04

dg2/dp - 1.6600260 - 1.6579776 1.234E-03 - 1.6595000 3.169E-04

eg 1.23E-03 3.17E-04

Table 5.12 Central Difference Approximations to the Pammet_;r Sensitivities for problem 3

parameter 1

Kuhn Tucker Forward Difference Appro_:imations

Method AP =2% relative error _P=0.1% relative error

df/dp -8.0000000 -8.0000001 -8.75E-09 - g.0000001 -8.75E-09

dx:/dp - 1.1471984 - 1.0434709 9.042E-02 - l. 1427923 3.841E-03
dx2/dp -0.3342830 -0.3298696 1.320E-02 -,).3378248 - 1.060E-02
dx3/dp -0.2279022 -0.2847166 -2.493E-01 -:).2292447 -5.891E-03
dx,ddp -3.5403608 -3.5084682 9.008E-03 - 3.5376210 7.739E-04

ex 2.66E-01 1.27E-02

dul/dp-67.3428300 -62.2695100 7.534E-02 -66.8998810 6.578E-03
du3/dp 55.4605800 52.1090250 6.043E-02 55.1460460 5.671E-03

eu 9.66E-02 8.68E-03

dg2/dp - 1.6600260 - 1.6647592 -2.851E-03 - 1.6589239 6.639E-04

eg 2.85E-03 6.64E-04

Table 5.13 Forward Difference Approximations to the Pamm_ ter Sensitivities for problem 3

parameter 1
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KuhnTucker
Method

Central Difference Ap! roximations

AP =2% relative error AP=0.1%

df/dp 0.0000000 0.0000000 O.OOE+O0

relative error

0.0000000 O.OOE + O0

0.0000000 0.000E+00
0.0000000 0.000E+00
0.0000000 0.000E+00
0.0000000 0.000E+00

O.OOE+O0

0.0000000 0.000E+00
0.0000000 0.000E+00

O.OOE +O0

1.0000000 0.000E+00

O.OOE+O0

for problem 3

dxl/dp 0.0000000 0.0000000 0.000E+00
dx2/dp 0.0000000 0.0000000 0.000E+00
dx3/dp 0.0000000 0._0 0.000E+00
dxddp 0.0000000 0.00(g)(0)0 0.000E+00

ex O.OOE +O0

dul/dp 0.0000000 0.0000000 0.000E+00
du3/dp 0.0000000 0.0000000 0.000E+00

eu O.OOE +O0

dg2/dp 1.00000000 1.0000000 0.000E+00

eg O.OOE +O0

Table 5.14 Central Difference Approximations to the Par:tmeter Sensitivities
parameter 2

Kuhn Tucker Forward Difference Approximations

Method AP =2% relative error AP=0.1% relative error

df/dp 0.0000000 -2.200E- 13 2.200E-13 - 1.660E- 12 1.660E-12

dxl/dp 0.0000000 4.150E-05 -4.150E-05 8.316E-04 -8.316E-04
dx2/dp 0.0000000 -3.300E-05 3.300E-05 -6.601E-04 6.601E-04
dx3/dp 0.0000000 -2.020E-05 2.020E-05 -4.050E-04 4.050E-04
dx4/dp 0.0000000 -3.090E-05 3.090E-05 -6.180E-04 6.180E-04

e.x 6.46E-05 1.29E-03

dul/dp 0.0000000 8.840E-03 -8.840E-03 1.769E-01 -1.769E-01
du3/dp 0.0000000 - 1.270E-02 1.270E-02 -2.553E-01 2.553E-01

eu 1.55E-02 3.11E-01

dg2/dp 1.00000000 1.0000100 - 1.000E-05 1.0020100 2.010E-03

e.g I .OOE-05 2.01 E-03

Table 5.15 Forward Difference Approximations to the Parameter Sensitivities for problem 3
parameter 2
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KuhnTucker
Method

dffdp -lO.OOOO0O0

dxl/dp 1.3057920
dx_dp 0.5460588
dx3/dp -1.0541310
dx,ddp -2.3741690

EX

dul/dp 55.4605800
du3/dp -56.5052230

EU

dg_Jdp 0.67758780

Central Diff_rcn¢e Approximafion_

AP =2% relative error AP --0.1% relative error

-9.99999986 1.4E-08 -9.9_999986 1.4E-08

1.3055639 1.747E-04 1.3079005 -1.615E-03
0.5465549 -9.085E-04 0.5481210 -3.777E-03

-1.0523005 1.737E-03 -1.C520338 1.990E-03
-2.3700118 1.583E-03 -2.3720509 8.921E-04

2_3E-03 4.65E-03

55.4057600 9.884E-04 55.71658650 1.708E-03
-56.4808140 4.320E-04 -56.9128710 -7.214E-03

1.08E-03 7.41E-03

0.6766357 1.405E-03 0._767562 1.227E-03

1.41E-O$ 1.23 E-03

_gable 5.16 Central Difference Approximations to the Parameter _ensitivities for problem 3

parameter 3

Kuhn Tucker Forward Difference Approxir lafion_

Method AP =2% relative error Ai'=0.1% relative error

dffdp -10.0000000 -9.99999986 1.4E-08 -9.99999986 1.4E-08

dxl/dp 1.3057920 1.3726972 -5.124E-02 1.3151920 -7.199E-03
dx_dp 0.5460588 0.5453465 1.304E-03 0.5489030 -5.209E-03
dx_dp -1.0541310 -0.9886692 6.210E-02 -10457860 7.916E-03
dx4dp -2.3741690 -2.3442141 1.262E-02 -2 3672333 2.921E-03

Ex 8.15E-02 1.23E-02

du_/dp 55.4605800
du3/dp-56.5052230

EH

56.8153210 -2.443E-02 55 5101970 -8.946E-04
-56.9128710 -7.214E-03 -56 7627370 -4.557E-03

2.55E-02 4.64E-03

dgJdp 0.67758780 0.6668760 1.581E-02 C.6757969 2.643E-03

eg 1.58E-02 2.64E-03

Table 5.17 Forward Difference Approximations to the Parameter Sensitivities for problem 3

parameter 3

5.3.4 Problem 4

The final problem in the test set contains 4 parameters, the estimated sensitivities are

presented in Tables 5.18 - 5.23. As before, the central differe_ce approximations produce

the best results, and for this problem, the small step perturbati )n performs best. Excellent

agreement was achieved for all the parameters in this problem
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Kuhn Tucker C_nwal Difference Apt roximations

Method AP =2% relative error AP=0.1% relative error

df/dp 0.517404073 0.51740407 O.OOE+O0 0.51740407 O.OOE+O0

dxl/dp -0.40000000 -0.4000000 0.000E+00 -0.400000 0.000E+00
dxz/dp 0.09729967 0.0972994 2.960E-06 0.097300 -3.710E-06

dx3/dp -0.20000000 -0.2000000 0.000E+00 -0.200000 0.000E+00
dx_dp 0.28602513 0.2860244 2.447E-06 0.286026 -3.077E-06
dxs/dp -0.06773997 -0.0677393 9.994E-06 -0.067741 - 1.247E-05

V.x 1.07E-05 1.34E-05

du3/dp 0.40709971 0.4071024 -6.681E-06 0.407102 -6.731E-06
dus/dp -0.05662417 -0.0566248 - 1.038E-05 -0.056625 - 1.038E-05
du6/dp 0.34730309 0.3473052 -6.191E-06 0.347305 -6.219E-06
du9/dp 0.01908492 0.0190855 -3.280E-05 0.019086 -3.233E-05

eu 3.56E-05 3.52E-05

Table 5.18 Central Difference Approximations to the Par_ meter Sensitivities for problem 4
parameter 1

Kuhn Tucker

Method

Forward Difference Approximations

AP =2% relative error AP=0.1% relative error

df/dp 0.517404073 0.51740407 O.OOE+O0 0.51740407 O.OOE+O0

dxl/dp -0.40000000 -0.4000000 0.000E+00 -0.400000 0.000E+00
dxz/dp 0.09729967 0.0973210 -2.193E-04 0.097289 1.053E-04
dx3/dp -0.20000000 -0.2000000 0.000E+00 -0.200000 0.000E+00

dx4/dp 0.28602513 0.2860770 -1.814E-04 0.286000 8.713E-05
dxs/dp -0.06773997 -0.0677900 -7.388E-04 -0.067716 3.548E-04

Ex 7.92E-04 3.80E-04

du3/dp 0.40709971 0.4073857 -7.025E-04 0.407116 -4.073E-05
dus/dp -0.05662417 -0.0565732 8.997E-04 -0.056623 2.283E-05
du6/dp 0.34730309 0.3475276 -6.464E-04 0.347315 -3.481E-05
du9/dp 0.01908492 0.0190319 2.780E-03 0.019083 9.583E-05

3.07E-03 1.12E-04

Table 5.19 Forward Difference Approximations to the Pa'ameter Sensitivities for problem 4
parameter 1
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KuhnTucker Central Difference Approximations

Method AP =2% relative error AP=0.1% relative error

df/dp 0.306110869 0.30611087 O.OOE+O0 0.30611087 O.OOE+O0

dxl/dp 0.00000000 0.000(X)_ 0.000E+00 0.000000 0.000E+00
dx2/dp -0.14711868 -0.1471186 6.797E-07 -0.147119 4.758E-07
dx3/dp 0.00000000 0.0000000 0.000E+00 0.000000 0.000E+00
dxddp -0.04916518 -0.0491649 4.841E-06 -0.049165 3.620E-06
dx5/dp 0.09817962 0.0981794 2.332E-06 0.098179 1.742E-06

ex 5.42E-06 4.05E-06

du3/dp -0.05662417 -0.0566248 - 1.063E-05 -0.056625 - 1.038E-05
dus/dp 0.05051545 0.0505156 -3.662E-06 0.050516 -5.424E-06
du6/dp -0.06156394 -0.0615644 -6.903E-06 -0.061564 -7.115E-06
du9/dp 0.00240162 0.0024015 3.935E-05 0.002402 -2.373E-06

eu 4.15E-05 1.39E-05

Table 5.20 Central Difference Approximations to the Para neter Sensitivities for problem 4
parameter 2

Kuhn Tucker

Method
Forward Difference Api_roximation_

AP =2% relative error AP=0.1% relative error

df/dp 0.306110869 0.30611087 O.OOE+O0 0.30611087 O.OOE+O0

dxl/dp 0.00000000 0.0000000 0.000E+00 0.000000 0.000E+00
dx2/dp -0.14711868 -0.1470723 3.150E-04 -0.147117 1.196E-05
dxa/dp 0.00000000 0.0000000 0.000E+00 0.000000 0.000E+00
dxddp -0.04916518 -0.0490525 2.292E-03 -0.049161 8.675E-05

dxs/dp 0.09817962 0.0980709 1.107E-03 0.098176 4.190E-05

ex 2.56E-03 9.71E-05

du3/dp -0.05662417 -0.0570971 -8.352E-03 -0.056648 -4.279E-04
dus/dp 0.05051545 0.0510986 -1.154E-02 0.050545 -5.817E-04
du6/dp -0.06156394 -0.0620483 -7.868E-03 -0.061589 -4.015E-04
du9/dp 0.00240162 0.0024686 -2.790E-02 0.002405 - 1.404E-03

eu 3.23E-02 1.63E-03

Table 5.21 Forward Difference Approximations to the Par, tmeter Sensitivities for problem 4
parameter 2
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df/dp

dxl/dp
dx_dp
dx3]dP
dxddp
dxs/dp

Kuhn Tucker _fferenc¢ Appmximatj

Method AP =2% relative error AP--:0.1% relative error

1.1:_395457 O.OOE+O0
1.183954566 1.18395457 O.OOE+O0

-0.20000000 -0.2000000 0.000E+00 -0.200000 0.000E+00
0.09408231 0.0940821 2.689E-06 0.094082 2.317E-06

-0.35000000 -0.3500000 0.000E+00 -0.350000 0.000E+00
0.22881747 0.2288169 2.666E-06 0S28817 2.273E-06
0.02931310 0.0293137 -2.030E-05 0.(_29314 -1.723E-05

2.06E-05 1.75E-05

_X

du3/dP 0.34730308 0.3473054 -6.709E-06 0. _47305 -6.277E-06
dus/dP _0.06156394 -0.0615644 -8.089E-06 -0.061564 -7.115E-06
dus/dp 0.72069515 0.7206968 -2.248E-06 0.720697 -2.456E-06
dus/dp 0.15964688 0.1596474 -3.382E-06 0,159647 -3.570E-06

1.13E-05 1.04E-05

eu

Table 5.22 Central Difference Approximations to the Pammete_ Sensitivities for problem 4

parameter 3

Kuhn Tucker Forward DiffCr_nc_ A0oro_

Method AP =2% relative error XP=0.1% relative error

df/dp 1.183954566 1.183954566 O.OOE+O0 1.18395457 O.OOE+O0

dxl/dp -0.20000000 _0.2000000 0.000E+00 .0.200000 0.000E+00
dxTJdp 0.09408231 0.0941409 -6.226E-04 0.094083 -2.073E-06
dx3/dp .0.35000000 -0.3500000 0.000E+00 0.350000 0.000E+00
dxddp 0.22881747 0.2289599 -6.226E-04 0.228818 -2.098E-06

dxs/dP 0.02931310 0.0291757 4.687E-03 0.029313 1.559E-05
4.77E-03 1.59E-05

Ex

du3/dp 0.34730308 0.3485794 -3.675E-03 0.347369 -1.895E-04
dus/dP .0.06156394 -0.0614102 2.497E-03 -0.061557 1.153E-04
dus/dP 0.72069515 0.7229895 -3.184E-03 0.720811 -1.6lIE-IN
dus/dp 0.15964688 0.1595192 8.000E-04 0.159641 3.620E-05

5.52E-03 2.77E-04

eu

Table 5.23 Forward Difference Approximations to the Para_neter Sensitivities for problem 4

parameter 3
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KuhnTucker Central Difference ApI: roximations

Method AP =2% relative error AP=0.1% relative error

df/dp 0.010389619 0.01038962 O.OOE+O0 0.01038962 O.OOE+O0

dxt/dp 0.00000000 0.0000000 0.000E+00 0.000000 0.000E+O0
dxz/dp -0.03975934 -0.0397594 -8.803E-07 -0.039759 -1.082E-06
dx3/dp 0.00000000 0.0000(K_ 0.000E+00 0.000000 0.000E+00
dxddp 0.07614087 0.0761408 1.116E-06 0.076141 1.366E-06
dxs/dp 0.15499104 0.1549911 -5.162E-07 0.154991 -6.452E-07

V,x 1.51E-06 1.86E-06

du3/dp 0.01908492 0.0190855 -2.950E-05 0.019086 -3.238E-05
dus/dp 0.00240162 0.0024016 -7.745E-06 0.002402 -2.498E-06
du6/dp 0.15964687 0.1596474 -3.382E-06 0.159647 -3.633E-06
du9/dp 0.08386033 0.0838607 -4.031E-06 0.083861 -4.042E-06

eu 3.09E-05 3.29E-05

Table 5.24 Central Difference Approximations to the Par_ meter Sensitivities for problem 4
parameter 4

Kuhn Tucker Forward Difference Ai)proximati0n_

Method AP =2% relative error AP=0.1% relative error

df/dp 0.010389619 0.01038962 O.OOE+O0 0.01038962 O.OOE+O0

dxl/dp 0.00000000 0.0000000 0.000E+00 0.000000 0.000E+00
dxz/dp -0.03975934 -0.0397539 1.374E-04 -0.039759 1.856E-05
dx3/dp 0.00000000 0.0000000 0.000E+00 0.000000 0.000E+00
dx,ddp 0.07614087 0.0761542 - 1.744E-04 0.076143 -2.359E-05
dxs/dp 0.15499104 0.1549782 8.265E-05 0.154989 1.123E-05

ex 2.37E-04 3.20E-05

du3/dp 0.01908492 0.0193233 - 1.249E-02 0.019097 -6.561E-04
dus/dp 0.00240162 0.0024360 -1.432E-02 0.002403 -7.328E-04
duddp 0.15964687 0.1599642 -1.988E-03 0.159663 - 1.032E-04

du9/dp 0.08386033 0.0841484 -3.435E-03 0.083875 -1.755E-04

v,u 1.94E-02 1.00E-03

Table 5.25 Forward Difference Approximations to the Pa_xneter Sensitivities for problem 4 parameter 4

5.3.5 A Graphical Comparison of the Accuracy l)¢livered by Several Different
Methods

This section presents a graphical method that can be used to assess the accuracy of

the parameter sensitivity derivatives calculated by variou: methods. When we plot a bar

chart of the calculated sensitivity derivatives versus the trae sensitivity derivatives, we can

identify which components of the gradient are least accuI ate. A brief discussion of the
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significanceof eachgraphwill beprovided.

Figure5.1 and5.2presentagraphicalcomparisonof th__x/Oplandbu/Opl(as

calculatedby variousmethods2) for problem3. In additionto resuitsdiscussedin section

5.3.3,wecalculatedsensitivitiesby themodifiedKuhn-Tuckermethod.TheHessian

approximationsareprovidedin section5.2.

We canseein figure5.1thatfor largevaluesof Apfor fgrwarddifferencingwedid

notobtainresultsasaccurateasthosedeliveredby theothervariantsof theRQPsensitivity

algorithm. If weexaminethebarsfor theKT w/BFS Hesswe seethatthereis some

discrepancyin thecalculatedvaluesof thesensitivityderivative,;.Wealsocanseethat

usingtheHessianapproximationdeliveredby usingtheSR1updatewewereableto obtain
resultsbetterthanthoseobtainedby usingtheBFSapproximaton.

_)X3

l KT

RQP cd AP=-2%

RQP cd AP=0.1%

RQP fd AP=2%

RQP fd AP=0.1%

KT w/BFS Hess

KT w/SR1 Hess

_x 1

-3.6 -3.2 -2.8 -2.4 -2.0 -1.6 -1.2 -0.8 -0.4 0.0

Value of Sensitivity Derivative

Figure 5.1 A comparison of the accuracy of _x/_p for ]'roblem 3 parameter 1

We can see in figure 5.2 that all but the KT w/BFS H_,ss method produces good

estimates of the sensitivity derivatives. The discrepancy in &a/'0p is due to the Hessian

2KT - Kuhn Tucker sensitivity equations with exact derivatives
RQP cd AP=2% - RQP algorithm using 2 iterations to solve perturbed problem with central difference

approximations t_p=2% of the nominal value
RQP cd AP=0.1% - RQP algorithm using 2 iterations to solve perturbed problem with central difference

approximations Ap=0.1% of the nominal value

RQP fd AP=2% - RQP algorithm using 2 iterations to solve perturbed l,roblem with forward difference

approximations Ap=2% of the nominal value
RQP fd AP--0.1% - RQP algorithm using 2 iterations to solve perturbe*t problem with forward difference

approximations tip=0.1% of the nominal value

KT w/BFS Hess - The Kuhn Tucker sensitivity equations were solve¢ using the approximate Hessian
delivered by RQOPT when using the BFS update

KT w/SR1 Hess - The Kuhn Tucker sensitivity equations were solvexi using the approximate Hessian
delivered by RQOPT when using the SR1 update
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approximationnotconverging.

_)u 1

[] KT

[] RQP cd AP=2%

[] RQP cd AP=0.1%

[] RQP fd AP=-2%

[] RQP fd AP=0.1%

[] RQP w/BFS Hess

[] RQP w/SR1 Hess

-70 -60 -50 -40 -30 -20 -I0 0 I0 20 30 _0 50 60

Value of Sensitivity derivative

Figure5.2 A comparison ofthe accuracyof Ou/0p,forproblem 3 parameter I

Figures 5.3 and 5.4 present comparisons of the at curacy of the sensitivity

derivatives (calculated by various methods2). We can sec i that all methods are in good

agreement with the exception of the calculation of the K'I with the approximate Hessian.

Again the Hessian approximation did not converge fully Ibr this problem.

Figure 5.3

[] KT

[] RQPcdAP=2%

[] RQP cd AP =0.1%

[] RQPfd AP=2%

[] RQP fd AP =0.1%

[] KT w/appx BFS Hess

-0.40 -0.30 -0.20 -0.I0 -0.00 0.I0 0.20 _D.30

Value of Sensitivity Derivatives

A comparison of 0rdOp forProblem 4 as calculatedby variousmethods
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_u 4

8u 3

1

R KT

[] RQPcdDP2%

[] RQP cd DP--0.1%

[] RQP fd DP 2%

[] RQP fd DP=0.1%

[] KT w/appx Hess

_-Pl 0.45

-0.15 -0.05 0.05 0.15 0.25 0.3f:

Value of Sensitivity Derivatives

Figure 5.4 A comparison of various methods for calculatioa of 8u/Sp for Problem 4

5.4. CONCL SI N FR M TESTRES T

In summary, we feel that this initial testing has shown hat the RQP based method

can produce reliable estimates of parameter sensitivities. Furtt_er testing is required to

determine its performance on engineering problems, and to fu-ther resolve questions about

algorithm parameters and variations. The following conclusit,ns can also be drawn from

this initial testing.

We saw in section 5.2 that the Hessian approximatior improved if we allowed the

approximation to be updated during the sensitivity analysis, il)uring testing of the other

problems in the test set we observed the Hessian approximation improving as we calculated

the parameter sensitivities. This implies that if the Hessian al:pro ximati°n did not converge

during the solution of the original problem (or converged in t projected sense) then a good

estimate of the Hessian approximation can be built during th'_ sensitivity analysis. Once we

have a good approximation of the Hessian approximation th,m we can switch from a more

expensive central differencing approximation to a less expersive forward difference

approximation to the sensitivity derivative approximation. "_is conclusion is also

encouraging because the RQP sensitivity algorithm approac aes the Kuhn-Tucker sensitivity

algorithm as the approximation improve (as was demonstrated in section 3.2).

If the Hessian approximation found by the RQP method is a good approximation of

the Hessian of the Lagrangian then the Kuhn-Tucker sensil ivity equations can be used with

the approximate Hessian. However, tests need to be developed to check if the Hessian

approximation has converged. If the Hessian approximati,_n did not converge then

updating it while using the RQP sensitivity algorithm can cause the Hessian approximation

to converge. When this happens the Kuhn-Tucker sensiti,4ty equations may be used with

the Hessian approximation. Again, the issue to be resolved before this option can be
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investigated is how to test a Hessian approximation for conw rgence.

Our experiments with the SR1 update were very encc uraging. Section 5.2

demonstrated how the SR1 update was able to deliver a more accurate estimate of the

Hessian approximation than the BFS update. We also obserx ed exact convergence of the

Hessian approximation with the SR1 update if we allowed th r, Hessian approximation to be

updated during the sensitivity analysis. Near convergence o! the Hessian approximation

for problem 1 and 3 was also obtained when the SR1 update was used.

Even though our experiments with the SR1 update v, ere encouraging the SR1

update has some serious drawbacks that will have to be inve ;tigated further before the

method can be recommended. Unlike the BFS update the SR1 update is not self-correcting

(Ip 1987). As we saw in problem 4, the SR1 update deliver'xl an Hessian approximation

that was singular, and the RQP method performs best if the _essian approximation is

positive definite.

In section 5.3, we observed that the method was able to approximate sensitivity

derivatives. We saw that using central differencing yielded r'nore accurate estimates of the

sensitivity derivatives than using forward differencing appr_ximations. We did not

observe any major sensitivity to Ap when we were using the central differencing option.

We also observed that the forward differencing appl oximation has more trouble

evaluating sensitivity derivatives, and the perturbation step _ize Ap had more effect when

the functions being approximated are nonlinear in the parameter.

Finally, we observed that when the sensitivity deri,, ative is small, the RQP

sensitivity algorithm can sometimes have a difficult time fiuding the exact value. This was

demonstrated in the calculation of _9u2/_p for problem 1 anc_ also in the calculation of the

sensitivity derivatives for P2 in problem 3.
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6. Changes in the Active Set

This chapter describes our findings regarding chan;es in the active set of

constraints. The f'u'st section describes the four cases of changes in the active set of

constraints. The second section provides sample plots illu;trating the predicted behavior

from section 1. Next, the third section discusses several proposed solutions for dealing

with changes in the active set. The final section provides :ome procedures that can be used

to generate problems where there are changes in the active set.

6.1. CASES OF ACTIVE SET (_-IANGE

When the active set of constraints change some of _he sensitivity derivatives may be

discontinuous. It is also possible that at the point where tl',e active set changes, the

gradients of the constraints may become linearly depender t. When this happens the

optimization problem may become very difficult to solve. The four cases for changes in the

active set are;

1. A constraint enters the active set (constraint gra iients are linearly independent).
2. A constraint leaves the active set.

3. A constraint enters the active set (constraint gradients are linearly dependent).
4. A constraint enters the active set and causes the_'e to be no feasible solution

Case 1 and Case 2 are complementary 1. This can best be demonstrated by an

example. Consider an optimization problem whose solution changes as a parameter p, is

varied and the active set changes as p increases. Assume tl_e original problem is optimized

for a p=p0 and and a sensitivity analysis is performed. Th,_'_value of p is then increased to

p=pl (where pl > p0) and the problem is reoptimized. At i_=pl, constraint g3 will enter the

active set if p is increased any further, but the gradients of -'.he constraints remain linearly

independent as p is increased. Now p is increased to p=p:: (where p2 > pl > p0) and at this

point constraint g3 has been added to the active set. A Case 1 active set change has

occurred. To see the complementarity, assume we begin with p=p2 and conduct a

sensitivity analysis for decreasing values of p. Now whelt p = pl, for any value of p less

than pl constraint g3 will leave the active set. Thus, when p reaches p0, constraint g3 will

have left the active set and we have had a Case 2 change ir the active set for p going from

p2 to p0.

The behavior of the sensitivity derivatives for Case s 1 and 2 is characterized as

1 This means that active set change algorithm that are developed for :ase 1 changes in the active set may
also be used for case 2 changes in the active set
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follows. Thereisadiscontinuityin therateof changeof tile objective function with respect

to p (d2f*/dp2 is discontinuous), there can be a discontinu ty in the rate of change of the

some of the design variables (Ox*//)p is discontinuous), aid the rate of change of the

Lagrange multipliers can be discontinuous (i.e. Ou*//)p fo] a constraint leaving the active

set will go from some nonzero value to zero, this may cau ;e a change in the rate of change

of the other Lagrange multipliers as well). The Hessian 04"the Lagrangian is continuous

with respect to variations in p. For these problems there will be directional derivatives of

/)x*/'0p and 0u*/0p that can be used to make estimates of how the design variables and

Lagrange multipliers will change. Second order extrapolations of the behavior of the

objective function can also be made using d2f*/dp2 in a di'ectional sense.

The characteristic of Case 3 is a discontinuity in th,_.Lagrange multiplier estimate

(u* is discontinuous). The discontinuity in the Lagrange _aultiplier causes a discontinuity

in df*/dp and also causes the Hessian of the Lagrangian tt, be discontinuous. Since the

active set changes, there will also be a discontinuity in (0_*/'dp). At the point where the

constraints become linearly dependent it will not be possil,le to solve the Kuhn-Tucker

sensitivity equations because they will become singular, i!:or Case 3, there may be an

exchange of constraints in the active set (i.e. the new constraint may replace one of the

constraints that is already in the active set as p moves through the point).

The main characteristic of Case 4 is that there only exists a directional derivative

away from the point where the path terminates. In order tt, calculate the directional

derivative for Case 4 we need to be able to find the prope_ active set to follow when we

leave the degenerate point. Case 4 changes in the active s,_.twill be common when the user

overconstrains the design, i.e. sets the performance specifications to high to be physically

meet by the given design configuration.

6.2. DEMONSTRATION OF CASES

This section describes the behavior that we observ,_ in the initial test set for

problems that had changes in the active set. This section also discusses two test problems

that are not in the initial test set that are used to demonstra e the behavior of Case 3 changes

in the active set.

The problems in the initial test set only had Case 1 and Case 2 changes in the active

set. Indications of where the active set changes were she _wn on the plots of the optimum

sensitivity provided in the appendix.

If we examine the plots that are presented in the a _pendix (figures A. 1-A.8, A. 10,
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andA.11)wecanseethediscontinuityin 0x*/_p and 0u*/Op when the active set changes.

In problems 3 and 4, because there is only a small discon',inuity in 0x/Op, it is difficult to

see in the graphs provided (figures A.5,6,7,10,11) in the appendix. However for

problems 3 and 4 it is easy to see the discontinuity in 0u/_p, the slope of the Lagrange

multipliers, when the active set of constraints changes.

If we examine figures A.4 and A. 11, we see that iot all of the components of

_x*/0p are discontinuous when the active set changes. Ft_r problem 2 in figure A.4 we do

not see a discontinuity in Ox2*/0p, and for problem 4 in figure A.10 we do not see a

discontinuity in 3x1"/i9 p or 0x3*/19p, when the active set caanges. This behavior is partially

due to the fact that we were studying right hand side pertt_rbations for these problems. The

symmetry in problem 2 can be used to explain its behavicr. In problem 4, the gradient of

constraint g9 had zero's in the lust and third locations, thts we expect that perturbations of

constraint g9 should have no effect on 3Xl*/0p or Ox3*f01,.

The discontinuity in d2f*/dp 2 is difficult to see, when the active set changes for

most of the problems in the initial test set. However for t_'_stproblem 2, parameter 1,

(figure A.3) we can see the discontinuity in d2f*/dp 2. In tae plot of the optimum value of

the objective function versus Pl we can see that for value; of Pl < 1.055, d2f*/dp 2 is less

than zero (a region of negative curvature) and for values c_fPl > 1.055, d2f*/dp 2 is greater

than zero (a region of positive curvature).

In problem 2 (P2), problem 3 (Pl,P2,P3) and probl,_m 4 (P4) we studied the effect of

perturbing the right hand sides of the inequality constraints. In these problems we studied

a range of perturbations from where the constraint was inactive to where the constraint is in

the active set. When the constraint was inactive perturbations in the parameters had no

effect on the optimum. When the constraints entered the active set for these problems they

caused d2f*/dp 2 to go from zero to some nonzero number The discontinuity of d2f*/dp 2

can be seen in figures A.4, A.5, A.6, A.7, and A. 11.

The following example will demonstrate how the t,ptimum behaves for Case 3,

when the gradients of the constraints become linearly dependent upon a change in the active

set of constraints.

minimize: f = Xl 2 + (P - 1)2 (6.1)

subject to: gl = 3 Xl + 2 P - 10 > 0 (6.2)

g2 = 2 Xl + 3 P- 10>0 (6.3)

when P = 2, the minimum f* = 5 occurs at Xl* = 2 with tx,th constraints active and the

gradients of the constraints linearly dependent. The Lagra _ge multipliers and in the family

70



Ul,U2_ {3 Ul + 2 u2= 4, Ul > O,u2> 0} (6.4)

For this problem df*/dp, _x*fdp and_uf0pdo notexist. TIesederivativesdoexist in

boththepositiveandnegativedirectionsandareindicatedb¢3x/i_p+for increasingvalues

of p and3x/3p-for decreasingvaluesof p.

Figure6.1presentsthesensitivityinformationfor p:oblem 6.1-6.3. Figure 6.1 (a)

and (b) represents the fu'st order predictions of the new valu,;s of the Lagrange multipliers

for this problem. For this problem the linear predictions agIee with the optimum Lagrange

multipliers. There is a discontinuity at Ap = 0.0, therefore there are only be directional

derivatives for these values. Figure 6.1 (c) represents lineaJ predictions of the new value

of the objective function. Notice again that there is a discot_tinuity in the slope of the

prediction. Thus df*/dp does not exist for this value of p (l_owever df*/dp + and df*/dp-

will exist in a directional sense where the superscript + or - ndicate the direction of change

in p). Figure 6.1 (d) represents the predicted location of tht: optimum. Notice the

discontinuity in the slope at Ap = 0.0, the true location of tt, e optimum agrees with the

linear prediction for this problem.

(c)
6.0

5.0

4.0
t !

o.o oA Ap

f (d)

ku2

1.0
l I I I

-0.2 '0.1 0.0 0.1 0.2 v
Ap

2.5

1.5
I t

X
1

T T m,_ _AL 1 l

"= -0.2 -0.1 0.0 0.1 0.2Ap -0.2 0.1 0.0 0.1 o. p

Figure 6.1 Plot of the optimum sensitivity predicl ions for problem 6.27-29

We have also examined a test problem used by Fi tcco and Ghaemi (1982). This

test problem has a linear dependence in the constraints g_tdients. The problem is to design

a corrugated bulkhead for an oil tanker. The objective fur ction is to minimize the weight of

the bulkhead with constraints placed on allowable bending stress, moment of inertia,

corrosion, and minimum gage thickness of the material, l'he problem has six design
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variables,18designparameters,17constraints,anonlinearobjectivefunction,andnear

linearconstraints.We did notapplyanyscalingto thisproblem,eventhoughthe

constraintsfor thisproblemarepoorly scaled.

A sensitivityanalysiswasperformedfor variationsin tht;parameter,LT, from

0.01%to 1%usingtheRQPcodeRQOF'T(BeltracchiandGa'briele1987). Onestep

convergenceof theobjectivefunctionvalue,predictedobjectivefunctionvalue,design

variables,andtheLagrangemultiplierswerealsoused.Thisselsitivity analysiswas

performedbeforetheRQSENsystemwasbuilt, andall of thec_dculationswereperformed

by hand. Thereforewedid notrecordall of thevaluesof thed_signvariables,Lagrange

multipliers,andconstraints.

Figure6.2(a) isaplotof thesensitivityof theoptimalc,bjectivefunctionfor the

bulkheadproblemversustheparameterLT whichwasthelengthto thetopbrace.At LT =

482.8wenoticeadiscontinuityin theslopeof theobjectivefuaction. At thispoint wehave

encounteredaCase3changein theactiveset. At LT = 476.2-"thereis aCase2changein

theactiveset.

Figure6.4presentsaplot of thevalueof constraint1-a (g13)versusthevalueof LT.

At LT= 482.8,thevalueof thisconstraintgoesto zeroandtheconstraintenterstheactive

set.

Figure6.3presentsaplot of thevalueof theLagrang_multiplierfor constraint12

versusLT. Noticethatthereis adiscontinuityatLT = 482.8 this is dueto alinear

dependenceof theconstraintgradientsof theactiveset.As I,T movesfrom onesideof
482.8to theother,therewill beachangein theactivesetof _:onstraintswith g13replacinga

constrainton thelowerboundof x6.

Figure6.2(d)presentsaplotof theoptimalvalueof :lesignvariablesix.For LT >-

482.8,thelowerboundconstraintis active. However,whel LT < 482.8theoptimalvalue

of thisdesignvariableis nolongeronthebound.Figure6.Zalsopresentsplotsof the

behaviorof Xl andx3,wecanalsoseediscontinuitiesin the_evariableswhentheactiveset

changes.
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For this problem there is a second change in the a_tive set at LT -- 476.25 when g12

leaves the active set. As LT moves through 476.25 there s not the same type of
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discontinuityaswe sawfor Case3. ThisrepresentsCast.1,aconstraintleavingtheactive

set. We canseesomeof thecharacteristicsof thiscaseia theplots. In figure6.2,the

slopeof theobjectivefunctioniscontinuousatLT = 47( .25. In figure 6.3,thevalueof the
Lagrangemultiplierof constraintg12goesto zerosignifyingtheconstrainthasleft the

activeset. Finally, in figure 6.2wecanseethatOXl/Op, 9x3/'0p,and/)x6/0p are
discontinuousatLT = 476.25.

A Case4 changein theactivesetcanbeillustratcdby thefollowing simpleone
variableproblem.

minimizefix) = x
Subjectto: gl = x - Pl > 0

g2=x-2>0

When Pl = 1 the optimum solution to this problem is f*: :1.0, x*=l.0, and constraint gl is

active. When Pl is increased to pl=2.0 constraint g2 ent,:rs the active set. However, if Pl

is increased beyond 2.0 there is no feasible solution for rfis problem.

An engineering example of a case 4 change in the active set can be illustrated by the

following example. Find the optimum air plane to fly a liven mission, where the design

variables may be the size of the wings, engine size, cruis,: altitude, etc. The design

parameters might be; total cargo weight, runway length, _ir temperature at take-off, etc.

Assume a constraint on take-off distance is applied,

Take-off distance < Available Runway Le agth

and a parameter sensitivity study of total cargo weight is _i)erformed. As the total cargo

weight is increased, the take-off distance of the airplane i 1creases, and the design variables

of the airplane may also change. If the total cargo weight is increased beyond a certain limit

it may become impossible for the aircraft to take-off at th,: given runway length. A

parameter sensitivity analysis for values of the total cargo weight for values greater than

this limit are meaningless because there will be no solutio 1 to the problem since the plane

cannot take-off. Thus, for this problem when the runway length constraint enters the active

set there will be a case 4 change in the active set causing -to feasible solution to exist.

6.3. PROPOSED SOLUTIONS

This section will discuss some algorithms that car_ be used to obtain more accurate

estimates of the parameter sensitivity after the active set of constraints has changed. The

first subsection describes algorithms that can be used to c_dculate sensitivity derivatives

when there are Case 1 or Case 2 change in the active set. The second subsection presents

an example demonstrating how the algorithms presented n the previous section work. The
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final subsectiondiscusseshow sensitivityderivativescanbecalculatedfor Case3 changes

in theactiveset.

As wehavementionedpreviously,thesensitivityderivativesdonot existat points

wheretheactivesetchangesdueto thediscontinuitiespresentir_theoptimumpath.

However,thesensitivityderivativeswill existin adirectionalsense.Theproposed

algorithmsfor dealingwithchangesin theactivesetarebasedoacalculatingdirectional

derivatives.

Directionalderivativescanbeapproximatedasfollows

df,(Ap+) Limit (f*(P0 + Ap) - f.(p0), (6.5)

- dp =AP_0+_ Ap ,

Here df*(AP+)/dP indicates the rate of change of a function wi,en a parameter is perturbed

in the positive direction. When the base point for a sensitivit3 analysis is degenerate, we

can approximate directional derivatives using the RQP sensiti,'ity algorithm in the same

way as we approximate other derivatives.

6.3.1 Dealing with Case 1 and_2

We begin this section by presenting the following example problem

minimize: f = (Xl + 1)2 + (x2 - 2)2

subject to: gl = Xl - P > 0
g2=6" 2 Xl - x2 >0

(6.6)
(6.7)
(6.8)

When p = p0 = 1 as shown in figure 6.5, f* = 4, x* = (1,2) A sensitivity analysis

indicates that as p is increased, _x*/3p = (1,0). Notice, tha: as we increase p, eventually

constraint g2 will become active which is a Case 1 change ia the active set. Increasing p

from (x*,pl) will result in the optimum point moving alon[' the intersection of the two

constlaints. The deflection algorithm is based on finding a constraint intersection and then

calculating new values of _x*/c_p and 3u*/_gp along the new active set.
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Figure 6.5 Deflection of the Sensitivity Se arch Direction

The proposed algorithm for dealing with constraints entering or leaving the active

set is given by the following steps:

1. Determine _x*/39 at the base point

2. Calculate Apl for intersection of the constraint b3 finding the minimum Ap that

causes a constraint to enter/leave the active set

(6.9)

min/_p, g_L3_.p/j_ Activeset
AP 1= j +

min I(_p.i / j _ Active set (6.10)
Apl= j

3. Calculate bx* 1/'dp with the active set updated to reflect the change indicated by

step 2.

4. Calculate Ax and Au by

(6.11)

(6.12)

3x* 3x*l

Ax = "3-f"'XP + Ap2
3u*- 1+ _u*l

AU = --d-p---/xp -..if(-- Ap2

where
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Apl = min ( p - p0, 0)

Ap2 = max ( p - p l, 0)

5. Calculate the new value of the objective functicn by

af _f Axf ew
f(x*,p0) + Ap _-+

(6.13)

(6.14)

(6.15)

The first step in the above algorithm is to perform a sensitivity analysis to determine

which direction the optimum will move in. In the second step, we attempt to identify the

value ofp for which the active set will change using eqm tions 6.9 and 6.10. A new search

direction is calculated in step three which includes the changed active set. In step four, a

formula is provided which defines the proper value for A:t for before the constraint is

encountered and after the constraint becomes active (inactive). This result is used in step 5

to predict a new value for the optimum at the new point.

In step three of the deflection algorithm, it is nece:sary to find the deflected search

direction at the point where the new constraint enters the _ctive set. This can be done by

adding the newly violated constraint (or removing the con ;traint that is leaving the active

set) to the Kuhn-Tucker sensitivity equations and then so ving for/)xl//)p and Oul/_gp.

This computation can be performed efficiently by using matrix updating techniques as

described in (Diewart 1984). In order to obtain a more accurate estimate of the

sensitivities, the gradients of the active constraints can be re-evaluated at x = xl, where x 1

is the predicted intersection of the new constraint.

When using the deflection algorithm, a check shovld be made to assure that the

constraint gradients are not linearly dependent. If the con_,traint gradients are linearly

dependent then this procedure cannot be used to solve for :he optimum sensitivities because

there is no solution to the Kuhn-Tucker sensitivity equatic_ns. The procedure to be used

when the constraint gradients are linearly dependent will be discussed in section 6.3.3.

The estimate obtained in step 5 is a linear extrapol_ tion. A better estimate of the

new value of the optimum can be made using a quadratic extrapolation. The formula for a

quadratic extrapolation is (McKeown 1980, Fiacco 1983, 8arthelemy and Sobieski 1983)

df* 1 d2f *

f'new = f(x*) + Api _" + _'Api d--_Api (6.16)

where

d2f * /)2L [" _2L ]T_x* _uT b _vT/)a
(6.17)
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Using(6.16)to predictthenewvalueof theobjectivefunctionasp variesyieldsa
moreaccurateestimateof thenewoptimalobjectivefunctionuntil theactivesetchanges.

We shouldnotethatequation6.17is in termsof 3g//)pand3afOp,andcanberewrittenin

thefollowing form in termsof _x*/Op

d2f, 32L 2[" 32L "]TOx* _x*T 32L 3x*
dpi--_= _)pi-"_+ [.]_'*'J _ + _ _x*2 "_l

(6.18)

If we substitute equation 6.18 into equation 6.16 and write the equation in terms of

Ap and Ax we will obtain

1[ _2L 32LT _2L ]f, new=flstorder+ _ Api_._Api+ 2Api_A x + AxT x---_Ax (6.19)

where the first order approximation comes from equation 6 15. This form has the

advantage of being able to predict the new value of the objex tive function at a new value of

x and p. When the deflection algorithm is used to calculate _he new location of the

optimum then equation 6.19 can be used to make a second ( rder estimate of the new value

of the objective function.

As mentioned in section 6.1, a constraint leaving the active set (Case 2) is

complementary to a constraint entering the active set (Case 1). It may be possible to predict

df*/dp when a constraint leaves the active set without calcuiating 3x l*/3p and 3u 1/3t) along

the new active set. This could be beneficial for instances that only require estimates of

f*(p). To predict the behavior of the optimum when a constraint leaves the active set we

can use directional derivatives. Using the following formuia (Fiacco 1983)

df* _f +neq _hi
"d"P" = ]_'P i=_lviii.p.. _ ni___qlUi_pi (6.20)

and the fact when an inequality constraint leaves the active set its Lagrange multiplier goes

to zero, we can obtain an estimate of df*/dp at the point wtere the change in the active set

takes place, this is done by obtaining an estimate of bu/bp from a sensitivity analysis at the

base point using it be used to estimate when a constraint wll leave the active set. A

prediction of the df*/dp when the active set changes can then be made from the following

formula

df* _f r_q l_hi m_neq 1 _pi
"_'=]_"P+ i+l Vi'_"- i=2"lui

(6.21)

where

_Vi • •
1 =Vi* +._zxp,v i

(6.22)
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u1 _pi (6.23)i = ui* + AP 1

When these values of ul and vl are used we obtain a new estimate for the value of the

df*/dp that wiU be valid when the value of p is increased or decreased past pl.

The deflection algorithm can be used to predict when a second change in the active

set will take place. A prediction of when a second constraint may be added to or removed

from the active set can be made by making a linear approxim ttion using the following

formulas

gj =gJ + [_i + _ j _ Active set (6.24)

uj=uj+[_pi Ap j_Activeset
(6.25)

and

Ap2 = min/'_pg_ + _ '__gi T _x* 1|
j _ Active set (6.26)

j _ Active set
(6.27)

where Ap_ predicts the value of Pi that will cause the secor, d constraint to enter (using eq.

1
6.26) or leave (using eq. 6.27) the active set, gj is a predi,ztion of the value of the jth

constraint, and uj 1 is the predicted value of the Lagrange multiplier when the active set

changes. The predicted value for Ap2 is calculated as a lil_ear approximation of the value

of the constraint in the _)xl/3p direction, ff the constraints are interrelated (i.e. are

evaluated as a set) then it may be possible to use a more aczurate estimate of 3g/'bx in

formula 6.26, by predicting its new value by using the fox-nula

3x_, (pl)= _x__, (p0)+ _pi Ap _ (6.28)

When the constraints are interrelated _2g/c)X*_)P Can be evduated when _VxlJ3p is

evaluated.
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If thecalculationof thegradientof aparticularco_straintisnotexpensivethenthe
valueof thenew gradientmaybeusedin formula6.26.

Thedeflectionalgorithmandthevariantsthatwet: introducedin thissectionwill be

effectedby anynonlinearitythatispresentin theproblemparticularlynonlinearityin the
constraints.It shouldbeemphasizedthatthesesensitiviti_sareonly estimatesof howthe
sensitivitywill change.

6.3.2 An Example

This section presents an example problem to demt,nstrate how the deflection

algorithm of section 6.2.1 performs. Example problem (5.6-8) will be used. Figure 6.5

shows the solution for p -- 1.0, this example assumes tha_ p is increased to p = 2.5. The

exact value of the new optimum at p -- 2.5 is f* = 13.25, X* = (2.5,1).

For p = p0 = 1.0, the initial search direction for a_ increasing p is 0x*f0p = (- 1,0)

as shown in figure 6.5. Step 2 of our algorithm determint:s that constraint g2 enters the

active set when p=pl=2.0. For values of p greater than p_ the location of the optimum is

along the intersection of constraints gl and g2. The new search direction along constraints

gl and g2 is determined from step three to be,

0xl

"b-if" = (-1,2) (6.29)

For p = p2 = 2.5, which is greater than pl, the estimated Ax is composed of the

sum of two vectors: one vector from (x*,p0) to (x*,pl) plus the vector from (x*,pl) to

(x*,p2). Thus by equation 6.11 for a Ap=l.5

Ax = (1.5,-1)

Thus the estimate of the new location of the optimum for i)=2.5 becomes

(6.30)

X'new est = (2.5,1) (6.31)

Which is the true location of the new optimum for this problem. Without using the

deflection algorithm we obtain the following estimate (by xluation 2.9) of the optimum

X'new est = (2.5,2) (6.32)

By equation 2.7 and 2.8, the new value of the obje :tive function will be

fKTlSt = 10 (6.33)

Using equation 6.10, which takes into account the change in the active set, we get
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fKTDlSt = 10 (6.34)

Equation 6.16, which gives a second order estimate with,_ut taking into account the change

in the active set, we obtain

fKT2,d = 12.25 (6.35)

Equation 6.19, which provides a second order estimate bat does take into account the

change in the active set, we obtain

fKTD2nd = 13.25 (6.36)

Using the deflection algorithm the predicted location of the optimum was in exact

agreement with the true value. The linear predictions of I'*new gave the same value because

there was no component of the gradient of f in the x2 dir,_ction. Using equation 6.16 for

the second order estimate provided a better estimate of the- new value of the objective

function, but when equation 6.19 was used the exact value of the objective function was

obtained. We should probably not expect results this go_d in more general optimization

applications. However, we can expect better predictions of the location of the new

optimum and the value of the objective function for sma£ changes in the parameter when

the active set changes.

6.3.3 Dealing with Case

Case 3 is the most difficult case to deal with for c!langes in the active set because

when the active set changes, the Lagrange multipliers will be discontinuous and predicting

the new active set as the parameter moves through the del;enerate point is very difficult.

To deal with Case 3, we propose avoiding the singular point by reoptimizing the

problem for values of p that are on either side of the sing_dar point. Performing a

sensitivity analysis at both points, use these sensitivities in a directional sense for p moving

away from the singular point.

Reoptimizing the problem on either side of the s_ gular point may be a difficult

problem if the point is nearly singular. This may cause tt_e algorithm being used in the

reoptimization to fall or converge very slowly (Powell 1985, Bartholomew-Biggs 1986).

When using an algorithm such as RQOPT that up;tates an approximation of the

Hessian of the Lagmngian, it may be unclear which values of the Lagrange multipliers to

use if the Lagrange multipliers are not unique at the solution.
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6.4. GENERATION OF TEST PROBLEMS

This section will describe a procedure that can be usex:l to generate test problems that

possess changes in the active set. The fLrst section describes 1he generation of test

problems with Case 1 and Case 2 changes in the active set. qhe second section describes

the generation of test problems with Case 3 changes in the ac :ive set.

6.4.1 Test Problem_ for Case 1 and Case 2 Change'_ in the Active Set

Several test problems that exist in the literature posse _s Case 1 and 2 changes in the

active set (See Schmit and Chang 1984, Vanderplaats and Y_shida 1985, Vanderplaats and

Cai 1987). To generate new problems, active set changes for these two cases can be

introduced into a test problem by adding constraints that are l_ot active at the optimum but

are violated for small changes in the parameters. The follo_ ing is an outline of the steps

that can be used to generate test problems where there are changes in the active set

Step 1 Generate a NLP Test Problem. One such mc thod would be to use the

Rosen and Suzuki (1965) procedure.

Step 2

Step 3

Vary some problem parameters and find the 3ath of the optimal solution

with respect to p, say x*(p) from p0 to p2.

Choose a value of pl between p0 and p2 as ti_e point where a constraint will

enter the active set.

Step 4. Construct a new constraint such that

gnew(X*(pl),p 1) = 0

gnew(X*(pl - Ap),p 1 - Ap) > 0

and the gradient of gnew(X*(pl),P 1) is linea:ly independent of the gradients

of the constraints that are already in the active set.

Step 5. Calculate the path of the new problem fron_ pl to p2

The above algorithm can be used to create test pro!)lems for Case 1 when a

sensitivity analysis is conducted at p = p0 and then p in perturbed to p2. The same test

problem can be used as a Case 2 test problem, when the s,:nsitivity analysis is performed at

p = p2 and p is moved to p0.

This procedure is illustrated in figure 6.6 which shows a graph of a two variable

test problem along with the optimum x*(p0). At the optilaum, constraint gl is active. As

the p increases from p0 to pl the location of the optimum moves from x*(p0) to x*(p2),

and constraint gl remains active. To introduce a change ia the active set we can place an
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additionalconstraintg2(shown in figure 6.6 (b)), that ini ersects the vector {_)x(p0)/_)p}Ap,

where Ap = p2 - p0. The value of p where the path to the optimum intersects the new

constraint will be denoted as pl. By adding constraint g2, the optimum location x*(p2)

shown in figure 6.6 (b) will be different than without the constraint.

x*(p 2)

x*(p 1 )

'(pO)

x*(p O)

X
1

X 2
x*(p)
,,J

i (pO)_ x*(P ° )

X
1

Figure 6.6 The creation of Test Problems with chltnges in the Active Set

6.4.2 Generation of Test Problems for Case 3

This section will describe the generation of test prgblems that have a Case 3 change

in the active set. We first discuss problems that are in the literature. Then we will discuss

two different algorithms that can be used to generate test 0roblems of this type.

A survey of the literature revealed several test pro;91ems where the constraint

gradients are linearly dependent when the active set chan:!;es (Case 3). Three such

problems were found in articles by Bartholomew-Biggs (1986), Vanderplaats and Yoshida

(1985), and Fiacco and Ghaemi (1982). It is suspected that problems discussed by

Robertson and Gabriele (1987) and Barthelemy and Sobieski (1983) also possess Case 3

changes in the active set. Powell (1985) has studied the performance of RQP methods

when the gradients of the constraints are linearly dependent. The test problems that were

used by Powell can also be modified to be sensitivity test problems.

We can expect to find other test problems (Case 3) when we begin to study more

engineering test problems. Many engineering optimizatic n problems are fully constrained

at the optimum. When a new constraint becomes active f gr a fully constrained problem we

will either have a Case 3 change in the active set or loose the feasible region(Case 4).

To generate test problems for Case 3 changes in tl_e active set the algorithm
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describedin section6.4.1canbeusedwith the following mttlification. In step 4 when the

new constraint is added to the active set it will have to be lintarly dependent with the

constraints in the active set. To accomplish this the gradient of the new constraint at x(p 1)

can be constructed as a linear combination of the gradients o_"the other active constraints. It

may be possible with further work to control which constraiJit in the active set is replaced

when the active set changes.

An alternative, less general procedure that can be uscd to create test problems with

linearly dependent constraint gradients is illustrated for a two variable problem in figure

6.7. Figure 6.7 (a) shows a simple two variable optimizatien problem. The problem has

an elliptic objective function and is subject to an equality col;straint that changes as the

parameter p changes. There are also variable bounds preset _t. For p = p0 the optimum is

located at the intersection of the equality constraint and the x affable bound X2max. When p

is changed to p = pint the optimum is then located at the intersection of the equality

constraint and both X2max and Xlmin. At this point the grad tents of the constraints are

linearly dependent which causes the linear independence as_ umption of the Kuhn-Tucker

conditions not to hold. When p changes further to p = pl a; shown in figure 6.7 (b) the

optimum is now located at the intersection of the equality omstraint and Xlmin. Thus as p

moves from p0 to p 1 there will be a change in the active set with the constraint gradients

being linearly dependent. This procedure can be generalize, i to more dimensions. The

discontinuity in df*/dp can be modified by varying the ecce ltricity of the ellipses.

(a)

X 2

X2ma_

x,(pl_ (b)

x
X lmin 1 X lmin 1

Figure 6.7 The Creation of Test Problems with i..inear Dependencies
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7. Conclusions and Recommendatiom for Future Research

7.1. CONCLUSIONS

In this work we have proposed a new method for estimating parameter sensitivity

based on the Recursive Quadratic Programming method. The new method approximates

the sensitivities using a differencing formula and can be ._hown to be equivalent to a

modified Kuhn-Tucker method. The method appears to I,e very competitive with existing

methods when measured in terms of the number of function evaluations required to

calculate a parameter sensitivity. It does not require the calculation of second order

derivatives, but uses the BFS method or SR1 method for developing an approximation to

the Hessian of the Lagrangian.

The choice of the variable metric update (BFS or SR1) effects the amount of work

required to solve the perturbed problem, because differer_t updates provide Hessian

approximations of differing accuracies. Different variabl,: metric updates also effect the

speed with which the RQP algorithm can solve the probh;m.

Initial testing of the algorithm against problems with known sensivities has shown

that the method can adequately estimate the derivatives. _l'he central difference

approximation seems to provide the best results, particuh_rly when the Hessian

approximation is updated during the RQP iterations at tht perturbed point.

Using the RQP method to solve the optimization i,roblem may be beneficial in many

applications. This is because the RQP method has been _,hown to be one of the best

general purpose algorithms for solving nonlinear prograr_maing problems. The use of

variable metric updates allow the RQP method to solve problems where the Sequential

Linear Programming (SLP) method fails. The RQP metl_od can solve problems with very

nonlinear constraints, and the RQP method performs the !_est when there are many active

constraints at the optimum of the problem.

Chapter 6 has discussed potential problems occur-ing when there are changes in the

set. Chapter 6 also presented some techniques that can b_._ used to deal with these cases.

We observed discontinuities of the sensitivity derivatives in Chapters 5 and 6 when there

were changes in the active set of constraints. If we are u.qng sensitivity derivatives to make

extrapolations, we now know Case 3 will cause the largest discontinuities (i.e. step

discontinuities in the Lagrange multipliers) in the derivati yes, and Case 4 will cause no

solution to the proposed constraints to exist. We have al:o shown that the discontinuities

in/),x*/_p and Ou*f0p, that occur when the active set chaJlges, make our prediction of

which constraint will enter the active set second very difficult without reoptimizing the
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problem.

7.2. RECOMMENDATIONS FOR FUTURE RESEAI::_CI-I

The next step in the testing of the new RQP sensiti',ity algorithm will be to expand

the test set to include a larger variety of test problems. We will need to include problems

that have more variables, and also problems that demonstr:tte the behavior associated with

Case 3 and Case 4 changes in the active set. We will also leed to expand the test set to

include engineering test problems for which the Hessian o: the Lagrangian is not readily

available.

As we observed, the perturbation Ap can effect the accuracy of the derivatives that

we calculated and we will have to investigate methods to i nprove the choice of Ap. In our

initial testing we always let RQOPT use two iterations to s_alve the perturbed problem.

Further tests are needed investigate the effectiveness of the algorithm when RQOPT is only

allowed one iteration to solve the perturbed problem.

We observed that the Hessian of the Lagrangian in _proved if we allowed the

approximation to be updated during the reoptimization. More experiments need to be

conducted to find how to best update the Hessian approxitaation. We also need to find

when we should switch from using two iterations to solve the perturbed problem to using

one iteration to solve the perturbed problem. Further work is also needed to identify when

the Hessian approximation has converged. If the Hessian approximation converges to the

true Hessian of the Lagrangian then the Hessian approximation may be used in the Kuhn-

Tucker sensitivity equations, however 0VxL/0p will still n:ed to be calculated. Since

VxL -- 0 the calculation of 0VxL//)p may be subject to nurt erical noise and the RQP

sensitivity algorithm may perform better than the Kuhn-T_cker method.

The initial testing of the SR1 update was very enct,uraging in terms of the

convergence of the Hessian approximation to the True Hessian. However the SR1 update

proved to be unstable when used for test problem 4. We _,All need to investigate some

method that can be used to stabilize the SR1 update or find a set of rules that can be used

that will only allow the SR1 update to be used when the u?clated Hessian approximation

will be stable.

Using the RQP method to approximate the Hessia_t of the Lagrangian may be

improved further if a Hybrid MOM/RQP algorithm is usett to solve the original

optimization problem. A Hybrid MOM/RQP algorithm w,)uld use the Method of

Multipliers (or Augemented Lagrangian) algorithm for th_ first few stages, (build an

approximation of the Hessian of the Lagrangian) then switch to using the RQP method.

When the RQP method is used the approximation of the I-lessian of the Lagrangian from
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thenMOM methodcanbeusedastheinitial Hessianapprrximation,thisshouldhelpthe

RQPmethodquickly solvetheproblem,andalsoobtaina _;oodapproximationof the

Hessianof theLagrangian.

In summation we have seen that the new RQP sens Ltivity algorithm can find

parameter sensitivities. We still need to investigate if this _nethod will be superior to the

Kuhn - Tucker method for general problems. Section 3.2.2 demonstrated that there will be

a trade off with regarding the number of function evaluati(ns required by the Kuhn-Tucker

method versus the RQP method. We will have to conduct more experiments to study the

general accuracy that can be expected from the RQP sensit,vity algorithm.

Using ftrst order extrapolations can provide unsati ;factory results when the

functions are nonlinear with respect to p. This situation is illustrated in Figure 7.1, which

shows the effect of variations in P3 on x 1". On this plot a inear and quadratic extrapolation

are presented as well as the actual values of the optimum (f Xl*(P3). It can be seen that the

linear extrapolation does not provide a good estimate of the new value of Xl* when P3

changes, however the quadratic approximation provides al, accurate estimate of Xl*(P3) up

until the point where the active set changes.

If good estimates of the second derivatives can be ound then more accurate

estimates of the behavior of the optimum can be made by _sing second order

extrapolations.

There are few available methods to calculate second derivatives of the optimum with

respect to parameter variation but it is possible to predict d2f*/dpi 2 for some problems.

However the only published algorithm that was found for calculating O2x*f0pi 2 requires

third order derivatives, which are seldom available for engineering problems. Thus, an

algorithm based on the central differencing variants of the RQP sensitivity algorithm is

proposed that can be used to calculate second derivatives.

When using the central difference approximation _n estimate of the second

derivatives can be calculated from

d2y(_i) = y + - 2y + _¢- (7.1)
dpi 2 (Api) 2

Where y can represent f*, x*, u*, or g*, and the estimates of f÷,', x ÷,-, u +,', and g+,-

calculated in steps 2 and 4 of the RQP sensitivity algorithH] are substituted appropriately in

(7.1). When using a central differencing approximation tids option can be effective for

indicating when curvature is present, but may not be able _o accurately predict the true value

of the second order information. It should be noted that tais procedure may have the most
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difficulty in predicting O2u(pi)/_pi 2 because the RQP algor thm produces more accurate

estimates of f+,- and x+, - than u+, -.

Second derivatives might also be useful for predict ng when constraints enter the

active set. A prediction of when a constraint enters the acl: ve set can be identified using the

following model of the behavior of the constraints that are not in the active set

gnew = g(x*,p) + dd-_piApi + _'1_d2_ (Api)'2
(7.2)

9.46

uadrauc • x lLa.o .o. I I
9.42

9.40

9.38 . , . i
295 300 305 310 515 320 325 330

P(3)

Figure 7.1 A Comparison of Quadratic to Linear Ext_ apolations for the Sensitivity
Appmimations.

As a final note to this report we will discuss using the RQP method and the RQP

sensitivity algorithm in multilevel decomposition algoritlu as. Because multilevel

decomposition algorithms solve the same subproblems fo_" different values of system level

parameters, we expect that as the multilevel decompositioa algorithm converges (after the

proper active set has been identified) that the true Hessian of Lagrangian in the subsystem

will not change very drastically. If the RQP method is us_ to solve the subsystem level

optimizations and perform the sensitivity analysis, we expect that the Hessian

approximation will converge to the true Hessian of the La gl-angian as the multilevel

decomposition converges. If we use the approximation of the Hessian of the Lagrangian

from the previous subsystem optimization as the initial H,:;ssian approximation for the next

iteration, a better approximation of the Hessian of the La_ rangian should be obtained when

we solve the new subsystem problem.

The above discussion implies that using the RQP -nethod in conjunction with the
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multileveldecompositionmethodmaymeanthaton thef'_ t few systemleveliterationsthe
sensitivitiescalculatedatthesubsystemlevelmaybeinacc_rate,but theaccuracyof the

sensitivityderivativeswill improveaftereachiterationat thesystemlevel. In ouropinion
thisbehavioris suitablefor usewithmultileveldecomposition sincefar from theoptimumit

is oftennotadvantageous(ornecessary)to performexactl_nesearchesor haveexactvalues

of thegradients.However,asthesolutionis approached,ve needto obtainmoreaccurate

derivativesandperformmoreexactline searchesto obtainacceptableconvergence.
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Appendix 1

Test problems

This section will present a discussion of the test p :oblems that were used in the

initial testing. Selected plots of the optimum sensitivity are provided to show how the

optimum varies when the parameter is perturbed. The ph_ts will also demonstrate how

changes in the active set effect the optimum sensitivity.

On each plot that is presented, the base value of tt_e parameter will be indicated by a

vertical line indicating the value at which the sensitivity aaalysis was performed. Active set

changes will be indicated by a vertical line and a label indicating the conswaint that enters or

leaves the active set when the parameter is perturbed frora the base point. On the plots of

the optimum objective function vs the parameter, a linear extrapolation will be indicated by

a line showing the predicted value of the objective functi, m using equation 2.8.

The plots of the behavior of the optimum can be ltsed as a tool when diagnosing the

behavior of various algorithms used to predict parameter sensitivities. Nonlinearity in the

paths f*(x*,p), x*(p), and u*(p) can be seen in these plc, ts, this nonlinearity can be used

to explain why (or how far) linear extrapolations are vali4l. The discontinuities in the

sensitivities that occur when the active set changes can al so be seen and we can use these

discontinuities to establish regions where the extrapolatic ns are valid.
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Problem1:

Minimize

subjectto:

f(x) = (Xl - pl) 2 + (x2 - p3) 2

gl(x) = 2Xl - x_ - P2 > 0

g2(x) = p2_ 0.8x 2 - 2x2 > 0

Variable bounds [0] < x < [ 4 ]

Starting Point for Optimization x 0 = (0,3)

Optimum Point: f(x*(p0)) = 1.25

Both constraints are active:

Hessian of the Lagrangian H=[ 2"64 2.O]

pO = (3,1,3)

x*(p 0) = (2.5,2.0)

u*(p 0) = 0.3,0.4)

Sensitivity derivatives

0x* 0u* -0.2-- [04]varieddpl
from 1.5 to 4.8

3x* -0.1 Ou* r-0.13)41de= _ = L 0.00_i8 1 varied pldp2
from -3.0 to 1.5

df :0.4 3x* [_2] 3u" !-.404f ]dp""_ p"d'_'3= i ]_'= 1_-0.5896J varied Pl
from 2.2 to 3.95

Special features: Hessian matrix is available. Qui:_dratic objective function and

quadratic constraints. Active set changes are introduced for large changes in

the parameters. Problem is fully constrair_ed at the optimum. Plots of the

behavior of the optimum are presented in figures A. 1 and A.2.

Constraint gl leaves the active set when _1 > 4.5, and constraint g2 leaves

the active set when Pl < 2.0.

Constraint g2 leaves the active set when I'3 > 3.888, and constraint gl

leaves the active set when P3 ---2.4322. S,nce u*(p3) is nonlinear a linear

prediction of when the constraint will lea,, e the active set will not be accurate

for large variations in the parameter.
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Figure A.1
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Problem 2:

Minimize

subject to:

f(x) = 0.5x 5 1 x + X T 5 1
15

gl(x) = plxl + x2+ x3- p2 > 0

g2(x) = Xl + 2x2 + 3x3 - 4.7 - Pl > 0

[-1°IVariable bounds -10 < x <
L-10.1 L20J

Starting Point for Optimization x 0 = (1.1,1.2,1.3) p0 = (1,3)

Optimum Point: f(x*(p°)) = 25.5 x*(p0) = (1.C,1.0,1.0)

gl active at the optimum: u*(P 0) = (12.t L0.0)

_i111Hessian of the Lagrangian H 5 1
1 5

Sensitivity derivatives

df
= -7.0

dpl

F 2.0833333 l
3x* /-2.1666666"
_'i-=L -.9166666

3u* [-,L66_6666]p_'_l =
varied Pl from 0.8 to 1.2

df
--= 12.0
dp2

F 0.333333 l
3x* |0.333333|
P_'_'2 = L0.3333333J

3u* [2.  303333]Ni--- varied P2 from 2.7 to 3.2

Special features: Hessian matrix is available. Quach atic objective function and

linear constraints. Parameter 2 is a right ha nd side perturbation.

A plot of the behavior of the optimum with .-espect to p 1 is presented in

figure A.3. For Pl > 1.04889, constraint g2 enters the active set. We can

see a change in sign of d2f*/dPl 2 from a region of positive curvature to a

region of negative curvature. We can also s,:e the discontinuity of the slope

of _x*/0p and Ou*/0p when the active set changes.

A plot of the behavior of the optimum with respect to P2 is presented in

figure A.4. For Pl < 0.95, constraint g2 enters the active set.. Again we

can see the discontinuity in Ox*/Op2 and Ot_*/Op2.
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Figure A.3 Sensitivity with respect to p(1) for Problem 2
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Problem 3 (Common name Rosen and Suzuki Te., t Problem):

Minimize f(x) =x_ + x2+ 2x_ + x 2- 5Xl-5x2-21x3 + 7x4 + 100

subject to: gl(x)=(-x 2-x 2-x_-x2-xl+x2- '3 +x4)/8+p'>0

g2(x) =(-x 2- 2x 2- x_- 2x 2 + x, + x.l.)llO + p2>O

g3(x) = (-2x_ - x 2- x 2- 2Xl + x2 + x4)/5 + P3 > 0

-10
Variable bounds _1

L-10A

__x__

Optimum Point:

gl and g3 active:

Starting Point for Optimization x 0 = (O.O,O.O,O.C,O.O) pO = (1,1,1)

f(x*(pO)) = 56.0 x*(pO) = ( ).0, 1.0, 2.0, -1.0)

u*(p O) = (_ .0, 0.0, 10.0)

li00 0

800
Hessian of the Lagrangian H 0100

004

Sensitivity derivatives

F -1.1471984
df _x* [-0.33428030

= -8.0 p7_-1 = [ -0.2279022
L -3.5403608

au, F-67.3  83°° 
P_]"I = L 55.4605800 /

FoO-oO1 FO.Ol_x* bu*
d__(_f= 0.0 _ = 0"0 P_P_2=aP= Lo:oJ LO:OJ

- 1.3057920
df -10.0 _x* 0.5460588

dp"_"= '_b'] "= -1.0541310
_-2.3741690.

"-67.3428300-
0.0

55.4 605800 _

varied Pl from 0.86 to 1.12

varied P2 from 0.85 to 1.15

varied Pl from 0.86 to 1.12

Special features: Hessian matrix is available. Quadratic objective function and

quadratic constraints. Problem has been t,sed in the other studies of optimal

design, the parameters that we are studying are right hand side

perturbations.
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FigureA.5 andA.6 presentplotsof thevariatioaof theoptimumwith
respectto Pl. Thefollowing changesin theactvesetareintroduced:when

Pl < .855, constraint g3 leaves the active set; v hen Pl > 1.057, constraint

g2 enters the active set; when Pl > 1.078, constraint gl leaves the active set.

The plot shows that f*(Pl) is nonlinear. It is di fficult to see the

discontinuity in Ox*f_pl but we can clearly sec the discontinuity in Ou*/bpl.

Figure A.7 presents a close up view of the be} avior of x3 and x4. We can

see that x3 is a nonlinear and a piecewise cont, nuous function of Pl. The

discontinuities take place when the active set c hanges. With the resolution

in figure A.5 this behavior was very difficult _o see, however with the

enlarged view this becomes easy to see.

A plot of the behavior of the optimum with re ;pect to P2 is presented in

figure A.8. When P2 < 0.9, constraint g2 entt:rs the active set. In figure

A.8 we can see a sharp discontinuity in _u/_ and we also can see that large

errors would be introduced if the value of the objective function was

extrapolated from the base point to after the aztive set changed.
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Figure A.6 Sensitivity with respect to p(1) for Problem 3 (cont)
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Figure A.8 Sensitivity with respect to p(2) for Problem 3
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Problem 4:

Minimize
5 5 5 5

f(x) = Y_ejxj + )-'. _cijxixj+ _dix _
j=l i=lj=l i=1-"

5

subjectto: gi(x)= Y.aijxi-bi>0 i=l,10
j=l

Where the values of aij, bi, cij, di, ei are constants that can be found in (Coville

1969, Himmelblau 1972, Eason and Fenton 1974, or Sandgren 1977)

Variable bounds [0]i 0]_<x_< 20

o 2o

Starting Point for Optimization x0 = (0.,0.,0.,0.,1.) p0 = (b3, bs, b6, b9)=(-.25,-4.,-1.,5.)

Optimum Point: f(x*(p0)) =.3.234866708

x*(p0) = (0.3, 0.3334676, 0.':-,0.4283101,0.2239649)

g3, g5, g6, and g9 are active:

u*(p 0) = (0.,0.,0.517404,0. ,0.306111,1.183954594,0.,0. ,0.010390,0.)

Hessian of the Lagrangian

-6.72 -4.0 -2.0 6.4 62.40 ]
-4.09.400641 _ -6.2-2.0 -1.2 -2".0 1

HE6.4 -1.2-6.2 -1.2 9.3418 -4.0 J-2.0 6.4 -2.0 -4.0 6.2688

Sensitivity derivatives

-0.4

df _x* r 0.097300 ]
_0.2

d-_= .517404 p-_l =/0.286025/
t--0.067740--I

0.407099 ]
-0.056624 /
0.347303 |
0.019084 _1

varied Pl from -0.39 to -.019

loa



0.0 r-0056 241
-'x* _-0.147119q 3u* /.0505155/

df eta-=/ -0.0 | =| -.0615 4/
T_ ='306111 op2 /_.049166 / _ L0.0024()16J

I_ 0.09817 -J

varied P2 from -4.5 to -3.5

-0.2

_x* _0.094082q
-0.35 /

df = 1.18395 op3 |0.228817 [
dp3 L0.029313J

I- .34303 -1
0u* /-0.061564[

p7_3 = | 0.720695 |
L 0.1596_7J

varied P3 from - 1.2 to -0.8

00 r0.0x,, 851
_-0.039759q au* |0.0024021

df ax* 0.0
_--_=.010390 p-3-_4=|0.07614081 _=/0.15!,647|Lo.o8:_860J

L_.15499104=I

varied P4 from 4.0 to 6.0

Special features: Hessian matrix is available. Cubic .>bjective function and linear

constraints. Active set changes are introduced ft)r changes in P4. The

parameters being studied are right hand side per urbation. This problem has also

been studied by Fiacco et. al. (1974,1983).

A plot of the sensitivity of the optimum with respect to Pl is presented in figure

A.9. Plots of the optimum sensitivity with resp,:ct to P2 and P3 are similar to

those to Pl. For variation in the fast three paratneters, the optimum objective

function behaves linearly and there are no chan[;es in the active set for the range

of parameter perturbation that was studied.

A plot of the sensitivity of the optimum with re _pect to P4 is presented in figures

A.10 and A.11. Constraint g9 leaves the active: set when P4 < 4.876. After

constraint g9 has left the active set further variation of p4 has no effect on the

optimum. For increasing values of P4, errors would be introduced if a linear

extrapolation was used.
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Figure A.10 Sensitivity with respect to P(4) for Problem 4
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Figure A.11 Sensitivity with respect to P(4) for Problem 4 (cont)
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Appendix 2

THE RQ(c-_E AND ROSEN SYSTEMS

This section will discuss the system thtt was created for studying parameter

sensitivities. The first subsection introduces ti_e support program RQCRE that was written

to simplify the construction of test problems. The second section will discuss the RQSEN

system. The RQSEN system is a interactive program that acts as a post

processor/sensitivity analysis module for the P,QOPT program.

RQCRE and RQSEN were set up to l:ave some user friendly features. The

programs have some user-freindly features hcwever the programs will crash if, the user

enters numbers in response to a promt for an _dpha data type, and may crash if the user

enters letters when the system is requesting numbers.

A2.1 The RQCRE Support System

The RQCRE program was written to r, xluce the time required to implement test

problems. The RQSEN program requires app roximately 30 arrays and a complicated main

program to be written by the user. The RQCFE program automatically dimensions the

proper arrays and writes the required calling t rograms. Using the RQCRE program

reduced the time required to implement test plograms during our initial testing.

The RQCRE program is essentially a i)rogram that writes another program. The

main features of the RQCRE program are;

1. The program can be used in an intcractive mode.

2. The program writes the main callirg program.

3. The program can write an oudine of the function subprogram.

4. The program can be used to update _the problem formulation.

A structure chart of the RQCRE prog_ am (in CMS) is presented in Figure A2.1.

The basic functions of the program modules are;

RQCRE.EXEC - this module connect; the proper output files to the proper unit
numbers.

RQCRE - is a FORTRAN program that can be used interactively to create a problem
for submission to the RQSEN system. The input to RQCRE can either
come from a data file or from :he user. The output from RQCRE is a data

file "data" that can be used as m input file for RQSEN, a MAIN FORTRAN

1)9



programreadyfor compilation,_nd ashellfor thefunctionsubprogram.
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MAIN

Figure A2.1 A Structure Chart fol the RQCRE Program.

3 =N

0 =LFSW

0 =NEQ
0 =LEQ

2 =NINEQ
2 =LINEQ

2 =NPARM

15 =MAXIT

1 =ISTART

1 =IFIN

50 =LPP

6 =NOUTFL

5 =ITR

1. E-4 =PMIN

I. E-8 =CAPFMN

0.5 =DELTA

I0.0 =R
•0001 =GAMMA

I. 0E-8 =EPSQP

5. E-4 =EPSGRD

2 =IDIF

0 =NSCALE

I.E-II =ZEROM

i. 1 =X (1)

1.2 =X(2)

1.3 =X(3)

-I 0. =XMIN (i)

-i0. =XMIN (2)

-i0. =XMIN (3)

20.0 =XMAX (I)

20.0 =XMAX (2)

20.0 =XMAX (3)

1.0 =PABM (I)

3.0 =PARM (2)

Figure A2.2 A Sample of a Data file (Test Problem 2) for the RQSEN Program.

11_



data - the input/output data file that coiLtains the algorithm parameters, starting point
and initial values of the pararn¢ters for RQSEN.

MAIN - FORTRAN program used as :he main calling program when running
RQSEN.

FSUBI - a FORTRAN function that th,_ user is required to modify by adding the
definitions of the constraints ar4d objective function.

A sample of the data file for test problt:m 2 is presented in Figure A2.2. This file

was written by the RQCRE program. This da_ a file is used as an input to the RQSEN

system to provide the programs with the values of the algorithm parameters, design

variables, and initial values of the parameters.

A sample of the a program written by the RQCRE program is provided in Figure

A2.3. The program represents an implementa ion for test problem 2 (described in appendix

1). The only modifications that were made to :he program are, the objective function and

the constraint definitions that were added to th= code generated by RQCRE.

A2.2 The RQSEN program

This section describes the implementaiion of the RQSEN system. The first topic to

be discussed is the capabilities of the RQSEN system. Next a description of the

implementation is provided. The final topic p "esented in this section is a sample session

from the RQSEN system.

The basic capabilities of the RQSEN s 1stem are;

1. The program can be used to solve ,,ptimal design problems.

2. The program can be used to condu,:t convergence studies for various versions of

RQOPT.

3. The program can be used to calcul_ te parameter sensitivity derivatives.

4. The program can be used to condu_:t studies of large variations in the

parameters.

5. The program can be used to create jarameter sensitivity plots that can be used.

for trade off studies.

The RQSEN system is currently impk mented on the following systems, an IBM

4341 under the CMS operating system and a ,nicroVAX under the VMS operating system.

The programs are written in FORTRAN 77 a_d implemented in double precision.

Figure A2.4 presents a structure char: for the RQSEN program (CMS
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C

i0

2O

PROGRAM RTS02

TEST PROBLEM 2 PH. D., CREATED BY TO]ID J. BELTRACCHI TO EXAMINE

CONVERGENCE OF THE HESSIAN APPROX AN]_ CHANGES IN THE ACTIVE SET

THIS HAS A QUADRATIC OBJECTIVE FUNCTIION AND LINEAR CONSTRAINTS

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION X (3) ,XMIN (3), XMAX (3), SCALE (3), H (3, 3), DELFHG (3, 3),

1 FUNCT (3),P (3) ,U (8),V(1) ,XS (3) ,D}'HGS (3, 3),FUNCTS (3), PS (3), US (8),

2 VS (I) ,DFDP (2), FUNCTP (3, 2) ,DXDP (i{,2) ,DUDP (8, 2) ,DVDP (i, 2), DFDPE (2),
3 DGDP (2, 2)

LOGICAL YESNO, ACTPT (8) ,ACTPTS (8)
CHARACTER* 3 YSN

CHARACTER* 7 FILENM

C0594ON /OPTDAT/ D(400)

COMMON /BFSWK/ DD(20)

COMMON /PMINI/ PMINI (3)

COMMON /PMAXI/ PMAXI(3)

COMMON /PARMS/ PARM (2)

INCLUDE (RQS)

END

W W***WWW_WWW*_W**WWWW*W*W _W**WWWW**W_ ** W WW*_ _% W W _: _: W* W W W _ _:W W _* W*******

FUNCTION FSUBI (X, IEVAL)

IMPLICIT REAL*8 (A-H,O-Z)

DIMENSION X (3)

C(I_VK)N /NFEVAL/ NCE,NFE

C_N /PARMS/ P(2)

IF (IEVAL .GT. I) GOTO 2

1 NFE=NFE+I

PLACE OBJECTIVE FUNCTION DEFINITION }iERE

FSUBI=2.5* (X (1)**2+X (2)*'2+X (3)*÷ 2) +X (1)*X (2) +X (1)*X (3) +X (2) *X (3)

1 +5.*(X(1)+P(1)*X(2)+X(3))

RETURN

2 NCE=NCE+I

PLACE LINEAR EQUALITY CONSTRAINTS HErE

GOTO (I0, 20, ) IEVAL

FSUBI=P (I) *X (i) +X (2) +X (3) -P (2)

RETURN

FSUBI=X (I) +2.*X (2) +3.*X (3) -4.7-Z (I)

RETURN

END

Figure A2.3 A Sample Program (Test Problem 2) for RQSEN.
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RQSEN.EXEC

MAIN

RQSEN

PARTP PARSEN

RQDR

RQOPTs
Routines

WRTPT

W

PARVAR

Routines

FSUBI

Figure A2.4 A Structure Cha _t for the RQSEN System.
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implementation).A briefexplanationof eact of theprogrammodulesis provided

RQSEN.EXEC- thismoduleconnectstheproperf'llesto theproperunit numbers
andpromptstheuserfor ther ameof theprogramto berun.

MAIN - themaincallingprogram."lhis module calls RQOPT and RQSEN, this
module also reads in the startiag point and algorithm parameters for RQOPT
and allows the user to save solution point to a data file for later use, i.e. a

sensitivity study at a later tirnt.

FSUBI - the function subprogram tha: defines the objective function and
constraints.

data - the data file that contains the algorithm parameters and values of the design
variables.

RQOPT - implementation of the RQP method described in Beltracchi and Gabriele
(1987 b).

RQSEN - the main driving routine to- a sensitivity analysis.

WRTPT - A utility program for writh_g the design point, Lagrange multipliers and
values of the objective functkm and constraints to a summary file. The
summary file is in a form whi_;h can be read by a plotting program to
graphically display the sensiti¢ity information.

solf - a data file used to communicate optimum design points to a plotting program.

PARTP - a subroutine that uses either" forward, central or user supplied routines to
calculate the partials with res[_ect to the design parameters of the objective
function and constraints.

PARSEN - a subroutine that calculat,zs 0x*/3p, Ou/0p, df/dp and dg/dp by either
forward or central differencing. The user can specify the perturbation size
and the number of iterations timt RQOPT uses to solve the perturbed

problem.

PARSEN2 - a subroutine similar to PARSEN but this imnplements modified central

differencing.

RQDR - is the routine that controls the execution of RQOPT for reoptimization.

PARVAR - the subroutine used to coaduct studies of large variations in problem
parameters, if parameter sensitivity derivatives are available then the location
of the starting point for the re,_ptimization is approximated by.

_X

Xinitial = x(p) + _ Ap

PRVRDR - is the routine that control; the execution of RQOPT for reoptimization.

?15



Therestof thissectiondescribesthestepsinvolvedin usingtheRQSENsystem.
Thefast stepis for theuserto createthenecessaryFORTRANcodeto definethe

maincallingprogramandthefunctionsubprogram( ;imilar to theonein FigureA2.3).The

secondstepis to setupadatafile (similarto theonepresentedin FigureA2.2) with the

valuesof thedesignvariablesandalgorithmparan_:ers.Thesefirst two stepscanbe

performedwith theaidof theRQCREpreprocessor
Oncethecallingprogram,functionsubprogIam,andthedataf'tlearedefined,the

usercanrun theRQSENsystemto conducta studyof thesensitivityof theoptimumof the

problemorto studytheconvergenceof theproblen,
A sampleof someconvergenceplotsarepr,:sentedin FigureA2.5 & 6. Theseplots

canbeusedto assesstheconvergencecriteriaof v_riousalgorithms,for exampleFigure

A2.5 showsthattheBFSversionwasableto solvethetestproblemfasterthantheversion

thatusedtheSR1update. HowevertheSR1upda:efoundamoreaccurateestimateof the

optimum,andoncetheregionof theminimumw_'_locatedtheconvergencefor theSR1

updatewasbetterthantheBFSupdate.
Thebestway to explainhowtheprogram_:anbeusedto conductparameter

sensitivitystudiesis to provideasamplesession(seeFigureA2.7) thatwasrununderthe

IBM versionof RQSEN. ThenextseveralparagJaphsdescribetheoutputin FigureA2.7,

all userresponsesareshownin ita2ics.
Thesampleproblem2, describedin appeldix 1,is solved. ThemodifiedSR1

updateis usedto approximatetheHessianof the i_,agrangian,andmodifiedcentral
differencingis usedtocalculatethesensitivityderivatives.Thefirst stepfor running

RQSENto invoketheexecfile to starttheprogn_m,this is doneby enteringrqsrl 4. The

first prompt asks the user for a name of a data fde to store the results in the user responds

with rts02. This data file can be used to maint_in a summary of all optimum points. The

next prompt is for the name of the program to bt: run, in our example program rts02, an

implementation of test problem 2 (see appendix 1) was run. The program and data file

were presented in Figure A2.3 and A2.2.

When the program begins the fast prompt is for the name of the file with the input

data. A response of rts02 is entered, the prot, a'arn then reads in the data from file rts02.

The next prompt asks if there is an approximati._n to several arrays available. These arrays
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Figure A2.5 A Sample Plot comparing the Convergence Characteristics of the BFS and SR1
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Figure A2.6 A Sample Plot Showing the Convergence of the Design Variables.
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aresavedif theoptimumhasalreadybeenfound,_responseof "n " for no is enteredk

Now theprograminvokestheRQOPTprogramto Jocatetheoptimumof theproblem. A

summaryof theoutputfrom RQOPT(duringtheot_timization)ispresentedin Figure

A2.7(a-c). After theproblemhasbeensolvedson_:_final statisticsfrom RQOPTare

presentedalongwith anapproximationto theHessianof theLagrangian,in both theLDLT

format andtheunfactoredform. Theseareshownin FigureA2.7(b& c).

After theproblemhasbeensolvedbyRQGPTcontrolis returnedto the

preprocessor(seeFigureA2.7(c)). Thepreprocessorprovidestheuserwith achoiceof

beingableto savetheoptimalpoint. In theexampletheresponsewas "y" for yeswas
entered,nexttheuseris askedif hewantsto savethefinal pointin thesamefile asthe

initial point, aresponseof "n" for nowasenterexi2. Next theuseris askedto supplya
newnameof thedatafile to storethepointin, arcsponseof rtsO2s wasentered.The

datafile wasthenwrittenandtheuseraskedif theywantedthegradientsandHessian

approximationto bewrittento thefile, aresponst:of "y" wasentered3. Thepreprocessor
nextasksif theuserwantsto performasensitivityanalysis,aresponseof "y" for yesis

entered.
Now controlis passedthetheRQSENpragram(seeFigureA2.7(c-e)). Thefirst

questionaskedby RQSENis if theuserwantsth,:_solutionpointswritten to asolutionfile a

responseof "n" is entered.Thenextquestionaskedis for avalueof epsilonto calculate

thepartialderivativesof theproblemfunctions,t_,QSENthencalculatesthepartialsof the

objectivefunctionandconstraints,thederivativeof theobjectivefunctionis thencalculated

by equation1.20.
Thenextstepin thesampleoutputis themlculationof thepartialsof theoptimum

designvariablesandLagrangemultiplierswith r,_spectto thefwstparameterfor the

problem. Againtheusercanspecifythesizeof theperturbationof theparameterandthe
numberof iterationthatRQOPTis allowedto u_;efor solvingtheperturbedproblem. In

thisexamplecentraldifferencingis used,andH,:ssianupdatingis allowed,noticethatin

FigureA2.7(d)theHessianapproximationhas,:onverged.
FigureA2.7(e)showsthevaluesof theparametersensitivityderivativesthatwere

calculatedby RQSEN.Thegradientof theobjectivefunctiondf*/dp wascalculatedby 3

1RQCRE or RQSEN will accept either "YES", "YE", "Y", "yes", "ye", or "y" for a yes responce and

"NO", "N", "no", "n", null for a no responce.
2If the user responded yes then the final point would oxerwrite the initial point in the data file.
3 The Data file can now be used as an input to RQSEN for a sensitivity analysis performed using the

gradients and Hessian approximation that were found v,hen solving the problem.
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differentapproximtions,all valuesarereportedfor =omparison.Thenextoptionof the

programis to studyfinite perturbationsin thepar_aeter.Thisoptioncanbeusedto
calculateoptimaldesignsfor differentvaluesof theparametersandthento write theoptimal

designpointsto adatafile (seeFigureA2.7(e&f)). Therestof thesampleoutputinvolves

terminatingtheprograrn.
Whentheusersavestheoptimalpointsplotsof theoptimumsensitivitycanbe

made.An exampleof thesensitivityfor problem_ whenPl is variedispresentedin Figure

A2.8.

25.5

25.0 --

24.5

24.0

4- ÷ ÷
4-

4.

÷ 4hi'÷4.÷ I÷ f(x*)_

÷

+

I--

I " I-- I

0.90 1.0C 1.10 1.20

p(1)

1.6 1 M x(1) I1.4 X X X x(2) /
x • x(3) ] •

X o

1_!61 N N N N M N dll_ NN II N i

;_

x x

0.4 _ 1.20
0.90 1._0 1.10

p(l)

Figure 3.8 A Plot of the Sensitivity of the Opt mum Objective Function and Optimum value
of the Design Variables for P_oblem 2 when Pl is perturbed
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rqsrl 4
INPUT _ OF THE FILE TO HOLD THE SENSITIVITY DATA

rts02

FILEDEF 9 DISK RTS02 DATA A1 ( LRECL tOO

INPUT NAME OF THE PROGRAM TO BE RU_: BY RQSEN

rts02

LOAD RTS02 SRI4 RQOPT OPTQP RQSEN PAP_EN2 PARVAR WRTPT

Execution begins...

* ENTERING RQOPT/RQSEN pHEPROCES:;OR *

( CLEAR START

INPUT NAME OF THE FILE WITH INPUT DATJ_(XXXXXXX)

rts02

OPENING FILE, RTS02 ON UNIT= 3 FOR INPUT OF PROBLEM DATA

ARE FUNCT, H,U,V, ACTPT, DELFHG IN FILE RTS02 (YES/NO)

n

RQOPT VERSION 2.12 - EXPERMENTAL 2/9/_8

STARTING INFORMATION

INPUT PARAMETERS :
NUMBER OF VARAIBiES = 3

OPTIMIZATION TO BE PERFORMED ON A NCN-LINEAR OBJECTIVE FUNCTION

NUMBER OF EQUALITY CONSTRAINTS = 0
= 0

INDEX

NUMBER OF LINEAR EQ CONSTRAINTS

NUMBER OF INEQUALITY CONSTRAINTS

NUMBER OF LINEAR INEQ CONSTRAI_IiTS

MAXIMUM NUMBER OF ITERATICNS

LINES PER P;GE

] TR

NUMBER OF OUTPUT FILE

= 2

= 2

= i00

= 50

= 1

= 6

DE] .TA

R

G;d _4A

EPSILON FOR THE QP

EPSILON FOR THE GI_kD

DIFFERNCING T"PE

INITIAL VAULE OF CTd?F

MINIMUM VALUE OF C_PF

MINIMUM NORM OF P VECTOR

SCALING PARAMETER NSG_LE

NUMBER OF PARAMETERS NPkBM

PARAMETER VALUE

1 1.00000000000000000
2 3. 00000000000000000

= 0.500000E+00

= 0.I00000E+02

= 0.100000E-04

= 0.100000E-09

= 0.100000E-03

= 2

= 0.000000E+00

= 0.100000E-06

= 0.100000E-03

= 0

= 2

XMIN XMAX SCALE

i 0.000000E+00 0.100000E+03 0.100000E+01

2 0.000000E+00 0.100000E+03 0.100000E+01

3 0.000000E+00 0.100000E+03 0.100000E+01

Figure A2.7(a) A Sample of RQSEN _r Test Problem 2.
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THE HESSIAN APPROXIMATION IN LDL(T) FORM

ROW 1 0.100000E+01

ROW 2 0.000000E+00 0.I00000E+01

ROW 3 0.000000E+00 0.000000E+00 0.100030E+01

ENTERING DRIVER ROUTINE
........ ITERATION 0: 0-

PAGE 1 OBJECTIVE FUNCTION = 0.331600(0E+02 FUNCTION EVA LUATIONS= 1
CONSTRAINT E VALUATIONS= 14

INDEX X(I) H(I) = ?0 V(]) G(I) >= ?0 U(I)

1 0.1100000E+01 0.600000E+00 0.000000E+00

2 0.1200000E+01 0.170000E+01 0.000000E+00

3 0.1300000E+01
CHECKING CONVERGENCE THE NORM OF P= 1 96446237582566496

........ ITERATION I: 0 °

PAGE 1 OBJECTIVE FUNCTION = 0.255353_6E+02 FUNCTION EVALU ATIONS= 8
CONSTRAINT E VALUATIONS= 19

INDEX X(I) H(I) = ?0 V([) G(I) >= ?0 U(I)

1 0.9059701E+00 A-.288658E-14 0.000000E+00

2 0.1000000E+01 A0.488060E+00 0.000000E+00

3 0.I094030E+01
CHECKING CONVERGENCE THE NORM OF P= 0.345110459418981358

....... ITERATION 2: 1

PAGE 1 OBJECTIVE FUNCTION = 0.25503133E+02 FUNCTION EVALU ATIONS= 16
CONSTRAINT E VALUATIONS= 23

INDEX X(I) H(I) = ?0 V,I) G(I) >= ?0 U(I)

1 0.I027985E+01 A0.577316E-14 0.586085E+01

2 0.1000000E+01 A0.244030E+00 0.659360E-01

3 0.9720149E+00

CHECKING CONVERGENCE THE NORM OF P= 0 395769395140752175E-01
....... ITERATION 3: 2"

PAGE 1 OBJECTIVE FUNCTION = 0.25500)00E+02 FUNCTION EVALU ATIONs= 23
CONSTRAINT E vALUATIONs= 25

INDEX X(I) H(I) = ?0 V(I) G(I) >= ?0 U(I)

1 0.1000000E+01 A0.288658E-14 0.120000E+02

2 0.1000000E+01 A0.300000E+00 -.288658E-14

3 0.1000000E+01

CHECKING CONVERGENCE THE NORM OF P= G.395476598531791093E-08

CONVERGENCE ACHIEVED

WITH

FINAL STATISTICS

CONVERGENCE ACHEIVED

IN 29 FUNCTION EVALUATIO}S

4 FUNCTION GRADIENTS

25 CONSTRAINT EVALUATIONS

2 CONSTRAINT GRADIEN[_'S

3 ITTERATIONS

0.00000000E+00 BEING THE MAXI_ CONSTRAINT VIOLATION

Figure A2.7(b) A sample of RQSEN f x test problem 2.

12_



THE HESSIAN APPROXIMATION IN LDL (T) ]'ORM

ROW 1 0.450000E+01

ROW 2 0.444444E+00 0.211111E+01

ROW 3 0.111111E+00 0.842105E+00 0. !94737E+01

THE HESSIAN APPROXIMATION UPPER TRI_LE

ROW 1 0.450000E+01 0.200000E+01 0.50,)000E+00

ROW 2 0.300000E+01 0.200000E+01

ROW 3 0.450000E+01

PAGE 1

INDEX X(I) H(I) = ?0 V(I)

1 0.1000000E+01

2 0.1000000E+01

3 0.1000000E+01

DO YOU WISH TO SAVE THE FINAL DATA(Y!_S/NO)?

Y
DO YOU WISH TO USE THE SAME FILE RTS)2 (YES/NO) ?

n

INPUT NAME OF THE FILE FOR STORAGE Oi_ DATA(XXXXXXX)

rts02s

OPENING FILE,RTS02S ON UNIT= 4 TO !DTORE PROBLEM DATA

DO YOU WANT FUNCT, H,U,V, DELFHG, ACTPT WRITTEN TO RTS02S

Y
DO YOU WANT TO PERFORM A SENSITIVITY ANALYSIS (YES/NO)?

Y
WELCOME TO RQSENI.0

A SENSITIVITY ANALYSIS PROGRAM FOR _{QOPT

LAST MODIFIED APRIL 28 1988

DO YOU WANT TO WRITE THE SOLUTION POINTS TO FILE=

n

OBJECTIVE FUNCTION = 0.2550!)000E+02 FUNCTION EVALUATIONS= 29

CONSTRAINT EVALUATIONS= 25

G(I) >= ?0 U(I)

A0.288658E-14 0.120000E+02

A0.300000E+00 0.000000E+00

(YES/NO) ?

9 (YES/NO)?

THE DERIVATIVE OF THE OBJECTIVE FUNCTION WITH

RESPECT TO ALL PARAMETERS WILL BE _ALCULATED

INPUT EPSP FOR THE CALCULATION OF DFIDP

?

.0001

THE DERIVATIVE OF OBJECTIVE FUNCTION W.R.T. P

-0.6999999989E+01 0.1200000000E+02

DO YOU WANT TO STUDY FINITE PERTURBAFIONS

ENTER PARAMETER NUMBER OR (-I OR CTRL Z) TO CALCITE GRADS?
9

-i

DO YOU WISH TO FIND PARTIALS OF THE DESIGN VARIABLES AND

LAGRANGE MULTIPLIERS W.R.T. PARAMETE R (NUMBER OR -i TO END) ?

?

1

Figure A2.7(c) A Sample of RQSEb; for Test Problem 2.
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ENTER EPSP FOR THE GRADIENT CALC_T]ON?

9

.OOOl

PERFORMING A SENSITIVITY ANALYSIS F(_R PARM( i)

ASSUMING BASE POINT IS STABLE

BASE POINT VALUE PARM( I)=0.10000(J0000000000E+01

PERTURBED VALUE OF PARM( I)=0.1000700000000000E+01

ENTER THE NUMBER OF ITERATIONS FOR ][QOPT?

9

2

************************** ENTERING }<QOPT **********************

ENTERING DRIVER ROUTINE

............. ITERATION 0: 0 PARAME'TER( i)= 0.10001000E+01

PAGE I OBJECTIVE FUNCTION = 0.255)0500E+02 FUNCTION EVALUATIONS = 7
CONSTRAINT EVALUATIONS = 26

INDEX X(I) H(I) = ?0 V(I) G(I) >= ?0 U(I)

I 0.1000000E+01 A0.100000E-03 0.120000E+02

2 0.1000000E+01 A0.299900E+00 0.000000E+00

3 0.1000000E+01

CHECKING CONVERGENCE THE NORM OF P= 0.924648797898831832E-03

ITERATION i: 0 PARAMEFER( i)= 0.10001000E+01

PAGE 1 OBJECTIVE FUNCTION = 0.25499301E+02 FUNCTION EVALUATIONS = 14
CONSTRAINT EVALUATIONS = 28

INDEX X(I) H(I) = ?0 V(I) G(I) >= ?0 U(I)

1 0.I000483E+01 A-.133227E-14 0.I19995E+02

2 0.9992333E+00 A0.299400E+00 0.000000E+00

3 0.I000183E+01

CHECKING CONVERGENCE THE NORM OF P= 0.673599522571675425E-03

.............. ITERATION 2: 0 PARAMEFER( i) = 0.10001000E+01

PAGE 1 OBJECTIVE FUNCTION = 0.25499300E+02 FUNCTION EVALUATIONS = 21
CONSTRAINT EVALUATIONS = 30

INDEX X(I) H(I) = ?0 V(I) G(I) >= ?0 U(I)

1 0.1000208E+01 A-.222045E-14 0.I19995E+02

2 0.9997833E+00 A0.299400E+00 0.000000E+00

3 0.9999083E+00

*************************** LEAVING RQOPT **********************

THE HESSIAN APPROXIMATION UPPER TRIANGLE

ROW 1 0.500000E+01 0.100000E+01 0.1C0000E+01

ROW 2 0.500000E+01 0.100000E+01

ROW 3 0.500000E+01

PERTURBED VALUE OF PARM( 1 )= 0.999899999999999997

ENTER THE NUMBER OF ITERATIONS FOR RQOPT?

?

1

Figure A2.7(d) A Sample of RQSEN for Test Problem 2.
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************************** ENTERING RQOPT **********************

ENTERING DRIVER ROUTINE
........... ITERATION 0 : 0 pARAMETER ( i) = 0. 99990000E+00"

PAGE 1 OBJECTIVE FUNCTION = 0.2550070(E+02 FUNCTION EvALUATIONS= 22CONSTRAINT EVALUATIONS= 44

INDEX X(1) H(I) = ?0 V( I'_ G(I) >= ?0 U(I)A0. 416638E-07 0. 120005E+02

1 0. 9997917E+00 A0. 300600E+00 0.000000E+00

2 0.1000217E+01

3 0. 1000092E+01cREc INGCo RGENCETHE OFP: 0.0 0000000000000000E÷00

CENTRAL DIFFERENCE APPROXIAMATIONS TO

DF/DP(PART F + U PART G) = -6" 999999({8889772823

DF/DP(PART F + DF/DX*DX/DP) = -7.002499F3049339675

DF/DP (CENTRAL DIFERENCE) = -7. 002499_;3051293134

DX/DP (CENTRAL FINITE DIFFERNECE)

0.20831917E+01 -0.21667085E+01 -0.9166)155E+00

DV/DP (FINITE DIFFERNECE)

DU( I)/DP( I) (CENT DIFF) = -0. 46669146E+01

DU( 2)/DP ( I) (CENT DIFF) = 0.00000(00E+00

ACTIVE CONSTRAINT DG( 2) /DP ( I) = -O. 60002999E+01

pGpp+PXpp.pGpp = DG( 2) /DP ( I) = .-0.60002999E+01

LINEAR ESTIMATE OF WHEN ACTIVE SET WIlL CHANGE FOR INCREASE P

G( 2) ENTERS THE ACTIVE SET FOR DELTA P = 0.49998E-01
I.E. WHEN P( I) = 0.10499975E+01

LINEAR ESTIMATE OF WHEN ACTIVE SET WILL CHANGE FOR DECREASED P

XMIN( 2) ENTERS THE ACTIVE SET FOR DELTA P =-0.46153E+00
I.E. WHEN P( I)= 0.53847045E+00

DO YOU WISH TO CALCULATE THE NEW OPTI_/M FOR A NEW VALUE OF pARM(

Y

pERFORMING A pARAMETER STUDY FOR PAInt( 1 )

ASSUMING BASE POINT IS STABLE

BASE POINT VALUE pABM( i) =-1000000300000000E+01

DF/DP = -0.70000000E+01 -0.91669155E+00

DX/DP ( I) = 0.20831917E+01 -0.216_ 7085E+01

ENTER THE PERTURBATION FOR THE pABAMITER OR

ENTER 0.0 OR NULL TO EXIT FORM THIS _,UBROUTINE?

9

• 1 Figure A2.7(e) A Sample of RQSEI'; for Test Problem 2.

i)?
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THE NEW VALUE OF P( i)= 0.1100000(E+01

************************** ENTERING }:QOPT **********************

ENTERING DRIVER ROUTINE

............. ITERATION 0: 0 PARAME[ 'ER ( I) = 0. II000000E+01

PAGE 1 OBJECTIVE FUNCTION = 0.24893909E+02 FUNCTION EVALUATIONS= 30

CONSTRAINT EVALUATIONS= 60

INDEX X(I) H(I) = ?0 V(I) G(I) >= ?0 U(I)

1 0.1208319E+01 A0.208111E-01 0.I15333E+02

2 0. 7833292E+00 A-.300030E+00 0. 000000E+00

3 0. 9083308E+00

CHECKING CONVERGENCE THE NORM OF P= 0.219176271755135058

ITERATION I: 0 PARAME'i'ER ( I) = 0. II000000E+01

PAGE 1 OBJECTIVE FUNCTION = 0.247i2404E+02 FUNCTION EVALUATIONS= 37

CONSTRAINT EVALUATIONS = 62

INDEX X(I) H(I) = ?0 V(I) G(I) >= ?0 U(I)

1 0. I045910E+01 A0. 415223E-13 0. I04876E+02

2 0. 7944067E+00 A0.235367E-13 0. 542741E+00

3 0. I055092E+01

CHECKING CONVERGENCE THE NORM OF P= 0.000000000000000000E+00

CONVERGENCE ACHIEVED

*************************** LEAVING _<QOPT **********************

ENTER THE PERTURBATION FOR THE PARAM_:TER OR

ENTER 0.0 OR NULL TO EXIT FORM THIS ;UBROUTINE?

9

0.0
DO YOU WANT TO STUDY FINITE PERTURBA'?IONS

ENTER PARAMETER NUMBER OR (-i OR CTRJ Z) TO CALCUI2%TE GRADS?

9

-I

DO YOU WISH TO FIND PARTIALS OF THE )ESIGN VARIABLES AND

LAGRANGE MULTIPLIERS W.R.T. PARAMETE{ (NUMBER OR -I TO END)?

9

-i

Ready; T=2.81/4.12 11:23:12 $2.46

Figure A2.7(f)A Sample of RQSEN forTest Problem 2.

1'?_5



REFERENCES

Adelman, H. M. and Haftka, R. T., 1986, "Sensitivity/,,nalysis of Discrete

Structural Systems", in AIAA Journal, Vol 24, No. 5, May 19_;6, pp 823-832.

Allen, R. G. D., 1938, Mathematical Analysis for Economists, Macmillan, New

York.

Arbuclde, P. D., and Sliwa, S. M., 1984, "Experiences Performing Conceptual

Design Optimization of Transport Aircraft" in Recent Experienc_s in Multidisciplinary
Analysis and Optimization, Part 1, Compiled by J. Sobieski, NASA CP 2327, pp 87-101.

Armacost, R. L., and Fiacco, A. V., 1974, "Computatic_nal Experience in

Sensitivity Analysis for Nonlinear Programming", in Mathemaical Programming, Vol. 6,

pp 301-326.

Arora, J. S., and Haug, E. J., 1979, "Methods of Desi_ n Sensitivity Analysis in

Structural Optimization", in AIAA Journal, Vol 17, No. 9, pp 970-974

Arora, J. S., and Tseng, C. H., 1987, "Discussion on t_SME Paper No. 86-DET-
26," in ASME Journal of Mechanisms, Transmissions and Autamation in Design, June,

Vol 109 No. 2.

Barthelemy, J. F., and Sobieszczanski-Sobieski, J., 1983, "Extrapolation of

Optimum Designs Based of Sensitivity Derivatives," in AIAA Journal, Vol. 21, May, pp
797-799.

Barthelemy, J. F., and Sobieszczanski-Sobieski, J., 1983, "Optimum Sensitivity

Derivatives of Objective Functions in Nonlinear Programming' in AIAA Journal, Vol. 21,

June pp 913-915.

Bartholomew-Biggs, M. C. 1982," ", in Nonlinear Optimization 1981, Edited by
M. J. D. Powell, Academic Press, London 1982, pp 213-221

Bartholomew-Biggs, M. C., 1985, "The Development of Recursive Quadratic

Programming Methods Based on the Augmented Lagrangian" Technical Report No. 160
The Hatfield Polytechnic, June.

Bartholomew-Biggs, M. C., 1986, "Numerical Examlrles of the Behavior of REQP
on Nonlinear Programming Problems Involving Linear Depen,ience among the Constraint
Normals", in Journal of Optimization Theory and Applicatior s, vol 48, No 2.

Bartholomew-Biggs, M. C., 1987, "Recursive Quadratic Programming Methods

Based on the Augmented Lagrangian," in Mathematical Progr tmming Study 31,
Computational Mathematical programming, edited by K. L. _itoffman, R. H. F. Jackson,

and J. Telgen, North Holland - Amsterdam, pp 21-41.

Bazaraa, M. S., and Shetty, C. M., 1979, Nonlinear lirogramming: Theory and

Algorithms, Wiley, New York.

Belegundu, A., and J. S. Arora, 1985, "A comparisot_ of Structural Optimization,"
in International Journal of Numerical Methods in Engineering.

Beltracchi, T. J., 1985, An Investigation of Pshenichl tyi's Recursive Quadratic

Programming Technique for Engineering Optimization, MS "1hesis Rensselaer Polytechnic

Institute, Dec. 1985

126



Beltracchi,T. J., and Gabriele, G. A., 1987 a, "Aa Investigation of Pshenichnyi's

Recursive Quadratic Programming Technique for Enginee:_ing Optimization", in ASME
Journal of Mechanisms, Transmissions, and Automation !_nDesign, Vol 109 No. 2 pp 248-
256 June 1987.

Beltracchi, T. J. and Gabriele, G. A., 1987 b, "RQOPT A FORTRAN 77

Implementation of the Recursive Quadratic Programming Fechnique for Engineering
Optimization, Users Manual, Rensselaer Polytechnic Insti: ute, Department of Mechanical
Engineering.

Brayton, R. K. and Cullum, J., "An Algorithm for Minimizing a Differentiable
Function Subject to Box Constraints and Errors," in Journal of Optimization Theory and

Applications, Vol 29, No 4., pp 521-558 December

Broyden, G. G., 1970, "The Convergence of a class of Double-Rank Minimization
Algorithms," in Journal of the Institute of Mathematic Al:plications, Vol 6., pp 76-90, 222-
231.

Buys, J. D. and Gonin, R., 1977 ,"The use of Au_,,mented Lagrangian Functions
for Sensitivity Analysis in Nonlinear Programming." in _ athematical Programming, Vol.

12 No. 2, pp 281-284.

Cha, J. Z., and Mayne R. W. 1987, "Optimization with Discrete Variables Via
Recursive Quadratic Programming: Part II: Algorithm anc_ Results," in ASME DE Vol. 10-
1, The Proceedings of the 1987 Design Automation Conf,_ence, Boston Ma.

Chen, C., Kong, W. C., and Cha, J. Z., 1987, "An Equality Constrained RQP
Algorithm Based on the Augmented Lagrangian Penalty t unction," ASME paper DAC-87-
107.

Comet B., and Laroque G., 1987, "Lipschitz Pro_)erties of Solutions in
Mathematical Programming," in Journal of Optimization '_eory and Applications, June

1987, pp 407-427.

Coville, A. R., 1968, "A Comparison Study of Nonlinear Programming Codes,"

Tech Report No. 320-2949, IBM New York Scientific C,mter, June.

Cullum, J. and Brayton, R. K., 1979 "Some Remarks on the Symmetric Rank-One
Update," in Journal of Optimization Theory and Applicaiions, Vol 29, No 4., pp 493-519
December

Dantzig, G. B., 1963, Linear Programming and _ xtensions, Princeton University
Press, Princeton New Jersey.

Dennis, J. E., and Schnable, R. B., 1983, Numerical Methods for Unconstrained

Optimization and Nonlinear Equations, Prentice Hall.

Diewart, W.E., 1984, "Sensitivity Analysis in l_conomics", in Computers in

Operations Research, Vol. 11, No. 2, pp 141-156.

Dinkel, J. J. and Kochenberger, G. A., and Wor_g D. S., 1983, "Parametric

Analysis in Geometric Programming: An Incremental Approach" in Mathematical
Programming with Data Pertubations I, A. V. Fiacco Editor, Lecture notes in Pure and

Applied Mathematics, vol 73, Marcel Dekker, New Yofl, pp 93-109.

Dixon, L. C. W., and Szego, G. P., 1980, "The Numerical Optimization of

Dynamic Systems: A Survey", In Numerical Optimizaticn of Dynamic Systems, L. C. W.
Dixon and G. P. Szego editors, North Holland, Amsterc am, pp. 3-28.

127



EasonE. D., and R. G. Fenton, 1974, "A Comparison ofNumerical Optimization

Methods for Engineering Design," in ASME Journal of Enginc:ering Industry Series B, Vol

96 No 1, pp 196-200, February.

Ecker J. G. and Kupferschmid 1985, "A Computation;:J Comparison of the

Ellipsoid Algorithm with Several Nonlinear Programming Alg:rrithms," in SIAM Journal

of Control and Optimization, Vol 23, No. 5, September 1985.

Falk, J. E., and Fiacco, A. V., 1982,"The use of Math,:_matical Programming:
Who let the Man Out:", in Computers and Operations Resear_:h, Vol. 9, No. 1, pp. 3-5.

Fiacco, A. V., 1976, "Sensitivity Analysis For Nonlinear Programming Using

Penalty Methods", in Mathematical Programming, Vol. 10, trp 287-311.

Fiacco, A. V., 1980, "Nonlinear Programming Sensitivity Analysis Results Using

Strong Second Order Assumptions", In Numerical Optimization of Dynamic Systems, L.
C. W. Dixon and G. P. Szego editors, North Holland, Amsterdam, pp. 349-362.

Fiacco, A. V., 1983, Introduction to Sensitivity and Sability Analysis in Nonlinear

Programming, Academic Press, New York.

Fiacco, A. V., and Ghaemi, A., 1982, "Sensitivity Ar_alysis of a Nonlinear
Structural Design Problem", in Computers and Operations R-_,search, Vol. 9, No. 1, pp 29-

55.

Fiacco A. V. and G. P. McCormick, 1968, Nonlinear Programming: Sequential

Unconstrained Programming Techniques, Wiley, New York

Fletcher, R., 1970, "A New Approach to Variable Mc tric Algorithms," in

Computer Journal, Vol 13, pp 317-322.

Fletcher, R., 1985, "Trust Region methods based on the 11 RQP method," in

Nonlinear Optimization 1984, edited by P. T. Boggs, R. H. Byrd, and R. B. Schnable,

SIAM Philadelphia, pp 22-40.

Fletcher, R. and Powell, M. J. D., 1974, "On Modifi :ation of LDLT
Factorizations," in Mathematics of Computation, Vol. 28, 1_o 128, pp 1067-1087.

Fox, R. L., 1971, Optimization Methods for Enginexring Design, Addison-Wesley

Publishing Company.

G,h,-i,,1,- G A on a Beltracchi T J, 1986, "A Comparison of Pshenichnyi's

Recursive Quadratic Programming Versus Generalized RedtJced Gradient Method, m
Proceedings of ASME PVP and OR methods in Engineering conference. ASME PVP 109

July 1986.

Gal, T., 1984, "Linear Parametric Programming- A 33rief Survey," in Mathematical

Programming Study 21, North Holland, pp 43-68.

Ganesh, N. and Biegler, L. T., 1987, "A Reduced Iqessian Strategy for Sensitivity

Analysis of Optimal Flowsheets," in AIChE Journal Febur:try, Vol 33, No. 2, pp 283-296.

Garcia, C. B., and Zangwill, W. I., 1981, Pathway; to Solutions, Fixed Points,

and Equilibria, Prentice-Hall, New Jersey.

Gauvin, J., and Dubeau, F., 1984,"Some Examples and Counterexamples For The

128



StabilityAnalysisof NonlinearProgrammingProblems,"i aMathematicalProgramming
Study21, NorthHolland, pp 69-78.

Gill, P.E.andMurray,W., 1978,"Thedesignan(i implementationof softwarefor
unconstrainedoptimization,"in DesignandImplementationof OptimizationSoftware,Ed.
byH. Greenberg,Sijthoff andNoordhoff.

Gill, P.E., andMurray,W., 1979,"TheComputationof LagrangeMultiplier
Estimatesfor ConstrainedMinimization,"in MathematicalProgramming,Vol 17,pp32-60.

Gill, P.E., Murray, W., andSaunders,M. A., 19:5, "MethodsFor Computing
andModifying theLDV Factorsof aMatrix," in Mathema:icsof Computation,Vol 29,No.
132,pp 1051-1077.

Gill, P. E., Murray, W., Saunders,M. A., andWright, M. H., 1983"Computing
Forward-DifferenceIntervalsfor NumericalOptimization" in SIAM Journalof Scientific
andStatisticalComputing,Vol. 4, No. 2, June1983,pp 310-321.

Gill, P. E., Murray, W., Saunders,M. A., andW1ight,M. H., 1985,"Software
andIts Relationshipto Methods,"in NonlinearOptimization1984,editedbyP.T. Boggs,
R. H. Byrd, andR. B. Schnable,SIAM Philadelphia,pp 139-159.

Gill, P. E., Murray, W., Saunders,M. A., andW1ight, M. H., 1986,
"Considerationsof NumericalAnalysisin aSequentialQuadraticProgrammingMethod",
in NumericalAnalysisLectureNotesin MathematicsNo. 1230,SpringerVerlag,NewYork 1986.

Gill, P.E.,Murray, W., andWright M. H., 1981,I'ractical Optimization,
AcademicPress,London.

Goldfarb,D., 1970,"A Familyof VariableMetric N'[ethodsDerivedby Variational
Means,"in Mathematicsof Computation,Vol 24,pp23-26

Guang-Yuan,W., andWen-Quan,W., 1985,"FuzzyOptimumDesignof
Structures",in EngineeringOptimizatoin,vol 8pp.291-31Y).

Haftka, R. T., Iott, J., and Adelman, H. M., 1985, 'Selecting step sizes in
sensitivity analysis by finite differences," Aug. 1985, NASA TM 86382.

Haftka, R. T., and Thareja, R., 1986, "Numerical E_ifficulties Associated with
Using Equality Constraints to Achieve Multi-Level Decomp_)sition in Structural
Optimization" AIAA paper 86-0854.

Himmelblau, D. M. 1972, Applied Nonlinear Progr, tmming, McGraw Hill.

Haug, E. J., and Arora, J. S., 1979, Applied Optim_d Design, Wiley, New York.

Haug, E. J., Komkov, V., and Choi, K. K., 1985, [Jesign Sensitvity Analysis of
Structural Systems, Academic Press, Orlando, F1.

Ip, C. M., 1987, "On Least-Change Secant Updated in Factored Form," In SIAM
Journal of Numerical Analysis, Vol 24, No. 5 pp. 1126-11._2, October 1987.

Janin, R., 1984, "Directional Derivative of the Marginal Function in Nonlinear
Programming," in Mathematical Programming Study 21, N4_rth Holland, pp 110-126.

Jittorntrum, K., 1984, "Solution Point Differentiabili ty without Strict
129



Complementarityin NonlinearProgramming,"in MathematicalProgrammingStudy21,
NorthHollandAmsterdampp 127-138.

Kojima, M, andHirabayashi,R., 1984,"ContinousDeformationof Nonlinear
Programs,"in MathematicalProgrammingStudy21,NorthHollandpp 150-198.

Kuhn,H. W., andTucker, A. W., 1951,"Nonline_trProgramming,"in
Proceedings2ndBerkeleySymposiumon MathematicalStatisticsandProbability,J.
Neyman(Ed.),Universityof CaliforniaPress,Berkeley,California.

Kwak, B. M. andHaug,E. J. Jr., 1976,"OptimumDesign in the Presence of
Parametric Uncertianty", Journal of Optimization: Theory _nd Applications, Vol. 19, No.
4, Aug., pp. 527-546.

Lagrange, J. L., 1881, Oeuvres de Lagrange, Paris

McKeown, J. J., 1980 a, "An Approach to Sensitivity Analysis", In Numerical
Optimization of Dynamic Systems, L. C. W. Dixon and G P. Szego editors, North
Holland, Amsterdam, pp. 349-362

McKeown, J. J., 1980 b, "Parametric Sensitivity A_lalysis of Nonlinear
Programming Problems", In Nonlinear Optimization Theory and Algorithms, L. C. W.

Dixon, E Spedicato and G. P. Szego editors, North Holland, Amsterdam, pp. 387-406

McKeown, J. J., 1980 c, "Sensitivity Analysis with Respect to Independent
Variables", In Nonlinear Optimization Theory and Algorithms, L. C. W. Dixon, E
Spedicato and G. P. Szego editors, North Holland, Amsterdam, pp. 407-427

Murray, W., and Wright, M. H., 1982, "Computation of the Search Direction in

Constrained Optimization Algorithms", in Mathematical Programming Study 16, North
Holland Publishing Company, pp 62-83.

Oren, 1974, "Self Scaling Variable Metric (SSVM) Algorithms, Part 2:

Implementation and Experiments," in Management Science Vol 20, pp 863-874.

Padula, S. L., and Young, K. C., 1986, "Simulator tor Multilevel Optimization
Research," NASA TM-87751, June 1986.

Padula, S. L., and Sobieszczanski-Sobieski, J., 198r, "A Computer Simulator for

Development of Engineering System Design Methodologie.%" NASA TM-89109, February
1987.

Powell, M. J. D., 1977, "A fast algorithm for nonlin,.arly constrained optimization
calculation," in ed G. A. Watson, Numerical Analysis Dund,_e, Lecture Notes in
Mathematics 630, Springer Verlag, Berlin 1978, pp 144-15".

Powell, M. J. D., 1978, "The Convergence of Variable Metric Methods for

nonlinearly constrained optimization calculations," in Nonlinear Programming 3, ed. by O.
L. Mangasarian, R. R. Meyer, and S. M. Robinson, Acader_lic Press, London and New
York, pp 27-63.

Powell, M. J. D., 1981, "Nonlinear Optimization 1931", Chapters 5 comments
5.22,5.23,5.24, and Chapter 6 comment 6.16, pp 324-326,_00.

Powell, M. J. D., 1983, "Variable Metric Methods f(r Constrained Optimization,"
in Mathematical Programming, The State of The Art Bonn 1982, Ed. by A. Bachem, M.
Grotschel, and B. Korte, Springer Verlag.

130



Powell, M. J.D., 1985,"A comparisonof two Subr,_utinesonsomeDifficult test
Problems,"in NonlinearOptimization 1984,edP.T. Boggs,R. H. Byrd, andR. B.
Schnable,SIAM Philadelphiapp 160-178.

Powell, M. J.D., 1986,"How BadaretheBFGSandDFP Methodswhenthe
ObjectiveFunction is Quadratic?", in Mathematical Progrart ming vol 34. pp 34-47.

Rao, S. S., 1987 a, "Description and Optimum Desi_ n of Fuzzy Mechanical
Systems", to appear in ASME Journal of Mechanisms, Tran _missions, and Automation in
Design.

Rao, S. S., 1987 b, "Multi-Objective Optimization of Fuzzy Structural Systems,"
in International Journal for Numerical Methods in Enginee_ ng, June 1987, pp 1157-1171.

Reklaitis, G. V., Ravindran, A., Ragsdell, K. M., lC_83, Engineering Optimization
Methods and Applications, Wiley, New York.

Robertson, W. D., and Gabriele, G. A., 1987, "The Optimal Design of a Rotary
Type Actuator for Magnetic Disk Drives," in Advances in D,;sign Automation - 1987,
Volume One: Design Methods, Computer Graphics, and Expert Systems, ASME DE-Vol.
10-1, pp 107-114, to Appear in ASME Journal of Mechanisms, Transmissions, and
Automation in Design.

Rockafellar, R. T., 1984, "Directional Differentiability of the Optimal Value

Function in a Nonlinear Programming Problem," in Mathematical Programming Study 21,
North Holland, pp 213-226.

Rosen, J. B., and Suzuki S., 1965, "Construction of Nonlinear Programming Test
Problems," in Communications of the ACM, vol 8 no 2, p 113.

Samuelson, P. A., 1947, Foundations of Economic ,_,nalysis, Harvard University
Press, Cambridge Mass.

Sandgren E., 1977, "The Utility of Nonlinear Progr_mming Algorithms", Ph.D.
dissertation Purdue University Dec. 1977, West Lafeyette Ir.

Sandgren, E., Gim, G., and Ragsdell, K. M., 1985, 'Optimal Design of a Class of
Welded Beam Structures Based on Design for Latatude," in _,SME Journal of

Mechanisms, Transmissions, and Automation in Design, Vcl 107 Dec. pp 482-487.

Schittkowski, K., 1980, Nonlinear Programming Cc_ies: Information, Tests,
Performance, Lecture Notes in Economic and Mathematical Systems, Vol 183, Springer
Verlag, New York.

Schittkowski, K., 1983, "On the Convergence of a S_xluential Quadratic
Programming method with an Augmented Lagrangian Line Search Function," in

Mathematisch Operationsforsch. Stattist. Ser. Optim. Vol 14 no. 2, pp 197-216.

Schmit, L. A., and Chang, K.J., 1984, "Optimum I)esign Sensitivity Based on
Approximation Concepts and Dual Methods", in Internation_l Journal for Numerical
Methods in Engineering, vol. 20, pp 39-75.

Shanno, D. F., 1970, "Conditioning of Quasi Newton Methods for Function
Minimization," in Mathematics of Computation, Vol 24, pp _47-657.

Shanno, D. F., and Phua, K. H., 1978 a, "Numerical Comparison of Several
Variable Metric Algorithms," in Journal of Optimization Theory and Applications, Vol 25,
No 4, Aug., pp 507-518.

131



Shanno,D. F., andPhua,K. H., 1978b, "Matrix ConditioningandNonlinear
Optimization,"in MathematicalProgrammingvol 14,pp 1,t9-160.

Sobieszczanski-Sobieski, J., 1982, A Linear Decon tposition Method for Large
Optimization Problems --Blueprint for Development, NASA TM 83248 Feb. 1982.

Sobieski, J., 1984, "Multidisciplinary Systems Optimization By Linear
Decomposition" in Recent Experiences in Multidisciplinary Analysis and Optimization, Part
1, Compiled by J. Sobieski, NASA CP 2327, pp 343-366.

Sobieszczanski-Sobieski, J., 1986, "The Case for Aerodynamic Sensitivity
Analysis," in Sensitivity Analysis in Engineering, Edited b¢ H. M. Alderman and R. T.
Haftka, NASA CP-2457, pp 77-93.

Sobieszczanski-Sobieski, J., and Barthelemy, J. F. 1985, "Improving
Engineering System Design by Formal Decomposition, Set sitivity Analysis, and
Optimization", NASA TM 86377 Feb 1985.

Sobieszczanski-Sobieski, J., Barthelemy, J. F., and Riley K. M., 1981,

"Sensitivity of Optimum Solutions to Problem Parameters"_ Proceedings of the
AIAA/ASME/ASCE/AHS 22nd Structures, Structural Dynamics and Materials Conference,
Atlanta, Ga., April 1981, pp 184-205, also NASA TM 831 _4, May 1981, AIAA Journal,
Vol 20., Sept. 1982, pp. 1291-1299.

Sobieszczanski-Sobieski, J., James, B. B., and Dod, A. R., 1985, "Structural
Optimization by Multilevel Decomposition", in AIAA Joun al Vo123, no. 11.

Sobieszczanski-Sobieski, J., James, B. B., and Riley, M. F., 1987, "Structural

Sizing be Generalized, Multilevel Optimization," in AIAA .' ournal Vol. 25, No. 1, January
1987, pp 139-145

Templeman, A. B., 1987, "Computer Aided Optimum Structural Design Under
Uncertainty," in Engineering Optimization, Vol 11, pp 281- 288

Van der Hoek, G., 1980 "Reduction methods in Notdinear Programming"
Mathematical Centre Tracts 126, Mathematisch Centrum, A_nsterdam 1980.

Vanderplaats, G. N., 1984 a, "An Efficient Feasible Directions Algorithm for
Design Synthesis", in AIAA Journal, Vol. 22, No. 11, Nov., pp. 1633-1639

Vanderplaats, G. N., 1984 b, Numerical Optimizatic, n Techniques for Engineering
Design: with Applications, McGraw-Hill Book Co., New _tork.

Vanderplaats, G. N., and Cai, H. D., 1987,"Alternalive Methods for Calculating
Sensitivity of Optimized Designs to Problem Parameters," it. Sensitivity Analysis in
Engineering, Edited by H. M. Alderman and R. T. Haftka, NASA CP-2457, pp 19-32.

Vanderplaats, G. N., and Yoshida, N., 1985, "Effici mt Calculation of Optimum
Design Sensitivity" in AIAA Journal, Nov., pp 1798-1803

Zedah, L., 1965, "Fuzzy Sets," Information and Coatrol, Vol 9, pp. 338-353.

Zhou J., and Mayne, R. W. 1985,, "Monotonicity Aaalysis and Recursive
Quadratic Programming in Constrained Optimization," in ASME Journal of Mechanisms,
Transmissions, and Automation in Design, December Vol 177, pp 459-462.

Zolezzi, T., 1985, "Continuitity of Generalized Grad _ents and Multipliers Under
132



Perturbations,"in Mathematicsof OperationsResearch,Vol. 10,No. 4, November,pp664-673

133


